1932

Abstract

The Atacama Desert of northern Chile is the oldest and most arid nonpolar environment on Earth. It is a coastal desert covering approximately 180,000 km2, and together with the greater Atacama region it comprises a dramatically wide range of ecological niches. Long known and exploited for its mineral resources, the Atacama Desert harbors a rich microbial diversity that has only recently been discovered; the great majority of it has not yet been recovered in culture or even taxonomically identified. This review traces the progress of microbiology research in the Atacama and dispels the popular view that this region is virtually devoid of life. We examine reasons for such research activity and demonstrate that microbial life is the latest recognized and least explored resource in this inspiring biome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095236
2016-09-08
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/annurev-micro-102215-095236.html?itemId=/content/journals/10.1146/annurev-micro-102215-095236&mimeType=html&fmt=ahah

Literature Cited

  1. Acosta M, Galleguillos P, Ghorbani Y, Tapia P, Contador Y. 1.  et al. 2014. Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation. Hydrometal 150:281–89 [Google Scholar]
  2. Araneda P, Jimenez C, Gómez-Silva B. 2.  1992. Microalgae from Northern Chile. III. Growth and beta-carotene content of three isolates of Dunaliella salina from the Atacama Desert. Rev. Biol. Mar. Oceanogr. 27:157–62 [Google Scholar]
  3. Azua-Bustos A, Caro-Lara L, Vicuña R. 3.  2015. Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ. Microbiol. Rep. 7:388–94 [Google Scholar]
  4. Azua-Bustos A, González-Silva C, Mancilla RA, Salas L, Gómez-Silva B. 4.  et al. 2011. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb. Ecol. 61:568–81 [Google Scholar]
  5. Azua-Bustos A, González-Silva C, Salas L, Palma RE, Vicuña R. 5.  2010. A novel subaerial Dunaliella species growing on cave spider webs in the Atacama Desert. Extremophiles 14:443–52 [Google Scholar]
  6. Azua-Bustos A, Zuniga J, Arenas-Fajardo C. 6.  2014. Gloeocapsopsis AAB1, an extremely desiccation-tolerant cyanobacterium isolated from the Atacama Desert. Extremophiles 18:61–74 [Google Scholar]
  7. Bachmann BO, Van Lanen SG, Baltz RH. 7.  2014. Microbial genome mining for accelerated natural products discovery: Is a renaissance in the making?. J. Ind. Microbiol. Biotechnol. 41:175–84 [Google Scholar]
  8. Barahona S, Dorador C, Zhang Z, Aguilar P, Sand W. 8.  et al. 2014. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature. Res. Microbiol. 165:782–93 [Google Scholar]
  9. Bazaes J, Sepulveda C, Acien FG, Morales F, Gonzales L. 9.  2012. Outdoor pilot-scale production of Botryococcus braunii in panel reactors. J. Appl. Phycol. 24:1353–60 [Google Scholar]
  10. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J. 10.  et al. 2014. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42:D1083–90 [Google Scholar]
  11. Bull AT. 11.  2004. How to look, where to look. Microbial Diversity and Bioprospecting AT Bull 71–79 Washington, DC: ASM [Google Scholar]
  12. Bull AT, Asenjo JA. 12.  2013. Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile. Antonie van Leeuwenhoek 103:1173–79 [Google Scholar]
  13. Bull AT, Goodfellow M, Slater JH. 13.  1992. Biodiversity as a source of innovation in biotechnology. Annu. Rev. Microbiol. 6:219–52 [Google Scholar]
  14. Busarakam K. 14.  2014. Novel actinobacterial diversity in arid Atacama Desert soils as a source of new drug leads PhD Thesis, Newcastle Univ., UK [Google Scholar]
  15. Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP, Goodfellow M. 15.  2014. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie van Leeuwenhoek 105:849–61 [Google Scholar]
  16. Busarakam K, Bull AT, Trujillo ME, Riesco R, Sangal V. 16.  et al. 2016. Modestobacter caceresii sp. nov., novel actinobacteria with an insight into their adaptive mechanisms for survival in extreme hyper-arid Atacama Desert soils. Syst. Appl. Microbiol. 39243–51 doi: 10.1016/j.syapm.2016.03.007 [Google Scholar]
  17. Cáceres L, Gómez-Silva B, Garró XB, Rodríguez V, Monardes V, McKay CP. 17.  2007. Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. J. Geophys. Res. 112:G054S14 [Google Scholar]
  18. Cameron RE, Gensel DR, Blank CB. 18.  1966. Soil studies—desert microflora. XII. Abundance of microflora in soil samples from the Chile Atacama Desert. Supporting Research and Advanced Devlopments, Space Programs Summary No. 37–38 IV140–147 Pasadena, CA: Jet Propulsion Lab. [Google Scholar]
  19. Campos V. 19.  1997. Microorganismos de ambientes extremos: Salar de Atacama, Chile. El Altiplano: Ciencia y Concieticia de los Andes C González 143–47 Santiago: Editor. Artegama [Google Scholar]
  20. Campos VL, Escalante G, Yañez J, Zaror CA, Mondaca MA. 20.  et al. 2009. Isolation of arsenite-oxidizing bacteria from a natural biofilm associated to volcanic rocks of Atacama Desert, Chile. J. Basic Microbiol. 49:S93–97 [Google Scholar]
  21. Campos VL, León C, Mondaca MA, Yañez J, Zaror C. 21.  2011. Arsenic mobilization by epilithic bacterial communities associated with volcanic rocks from Camarones River, Atacama Desert, northern Chile. Arch. Environ. Contamin. Toxicol. 61:185–92 [Google Scholar]
  22. Campos VL, Valenzuela C, Yarza P, Kämpfer P, Vidal R. 22.  et al. 2010. Pseudomona arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama Desert. Syst. Appl. Microbiol. 33:193–97 [Google Scholar]
  23. Castillo RG, Beck A. 23.  2012. Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol. 116:665–76 [Google Scholar]
  24. Castro JF, Razmilic V, Gomez-Escribano JP, Andrews BA, Asenjo JA. 24.  et al. 2015. Identification and heterologous expression of the chaxamycin biosynthetic gene cluster from Streptomyces leeuwenhoekii. Appl. Environ. Microbiol. 81:5820–31 [Google Scholar]
  25. Charlop-Powers Z, Milshteyn A, Brady SF. 25.  2014. Metagenomic small molecule discovery methods. Curr. Opin. Microbiol. 19:70–75 [Google Scholar]
  26. Clarke DA. 26.  2006. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73:101–14 [Google Scholar]
  27. Cockell CS, McKay CP, Warren-Rhodes K, Homeck G. 27.  2008. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts—dosimetric experiments in the hyperarid core of the Atacama Desert. J. Photochem. Photobiol. B 90:79–87 [Google Scholar]
  28. Conley CA, Ishkhanova G, McKay CP, Cullings K. 28.  2006. A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology 6:521–26 [Google Scholar]
  29. Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A. 29.  2007. Bacterial diversity in hyperarid Atacama Desert soils. J. Geophys. Res. 112:G04S17 [Google Scholar]
  30. Cordero RR, Seckmeyer G, Riechelmann S, Damiai A, Labbe F, Larose D. 30.  2014. The world's highest levels of surface UV. Photochem. Photobiol. Sci. 13:70–81 [Google Scholar]
  31. Costello EK, Halloy SRP, Reed SC, Sasha C, Sowell O, Schmidt SK. 31.  2009. Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Environ. Microbiol. 75:735–47 [Google Scholar]
  32. Crits-Christoph A, Robinson CK, Barnum T, Fricke WF, Davila AF. 32.  2013. Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:28 [Google Scholar]
  33. Davila AF, Gómez-Silva B, de los Rios A, Ascaso C, Olivares H. 33.  2008. Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J. Geophys. Res. Biogeosci. 113:G01028 [Google Scholar]
  34. Davila AF, Hawes I, Ascaso C, Wierzcheros J. 34.  2013. Salt deliquescence drives photosynthesis in the hyperarid Atacama Desert. Environ. Microbiol. Rep. 5:583–87 [Google Scholar]
  35. de los Ríos A, Valea S, Ascaso C, Davila A, Kastovsky J. 35.  et al. 2010. Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int. Microbiol. 13:79–89 [Google Scholar]
  36. Demergasso CS, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C. 36.  2004. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, northern Chile. FEMS Microbiol. Ecol. 48:57–69 [Google Scholar]
  37. Demergasso CS, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C. 37.  2008. Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504 [Google Scholar]
  38. Demergasso CS, Galleguillos F, Soto P, Serón M, Iturriaga V. 38.  2010. Microbial succession during a heap bioleaching cycle of low grade copper sulfides: Does this knowledge mean a real input for industrial process design and control?. Hydrometal 104:382–90 [Google Scholar]
  39. Demergasso CS, Galleguillos PA, Escudero LVG, Victot J, Zapeda A. 39.  et al. 2005. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80:241–53 [Google Scholar]
  40. Dorador C, Busekow A, Vila I, Imhoff JF, Witzel KP. 40.  2008. Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile. Extremophiles 12:405–14 [Google Scholar]
  41. Dorador C, Vila I, Imhoff JF, Witzel KP. 41.  2008. Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in northern Chile: an example of geographical dispersion?. FEMS Microbiol. Ecol. 64:419–32 [Google Scholar]
  42. Dorador C, Vila I, Remonsellez F, Imhoff JF, Witzel KP. 42.  2010. Unique clusters of archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. FEMS Microbiol. Ecol. 73:291–302 [Google Scholar]
  43. Dorador C, Vila I, Witzel K-P, Imhoff JF. 43.  2013. Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fund. Appl. Limnol. 182:135–59 [Google Scholar]
  44. Dose K, Bieger-Dose A, Ernst B, Feister V, Gómez-Silva B. 44.  et al. 2001. Survival of microorganisms under the extreme conditions of the Atacama Desert. Orig. Life Evol. Biosph. 31:287–303 [Google Scholar]
  45. Drees KP, Neilson JW, Betancourt Jl, Quade J, Henderson DA. 45.  et al. 2006. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl. Environ. Microbiol. 72:7902–8 [Google Scholar]
  46. Elsayed S, Trusch F, Deng H, Raab A, Prokes I. 46.  et al. 2015. Chaxapeptin, a lasso peptide from the extremotolerant Streptomyces leeuwenhokii strain C58 from the hyper-arid Atacama Desert. J. Org. Chem. 80:10252–60 [Google Scholar]
  47. Escalante G, Campos VL, Valenzuela C, Yañez J, Zaror C, Mondaca MA. 47.  2009. Arsenic resistant bacteria isolated from arsenic contaminated river in the Atacama Desert (Chile). Bull. Environ. Contam. Toxicol. 83:657–61 [Google Scholar]
  48. Escudero LV, Bijman J, Chong G, Pueyo JJ, Demergasso CS. 48.  2013. Geochemistry and microbiology in an acidic, high altitude (4,000 m) salt flat, high Andes, northern Chile. Integration of Scientific and Industrial Knowledge on Biohydrometallurgy 825 N Guiliani, C Demergasso, R Quatrini, F Remonsellez, C Davis-Belmar , et al. pp. 28–32 Zurich: Trans. Tech. Publ. [Google Scholar]
  49. Escudero LV, Casamayor EO, Chong G. 49.  2013. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations. PLOS ONE 8:e78890 [Google Scholar]
  50. Farias ME, Contreras M, Rasuk MC, Kurth D, Flores MR. 50.  et al. 2014. Characterization of bacterial diversity associated with microbial mats gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18:311–29 [Google Scholar]
  51. Fazzini RAB, Levican G, Parada P. 51.  2011. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Appl. Microbiol. Biotechnol. 89:771–80 [Google Scholar]
  52. Fernandez-Remolar DC, Chong-Diaz G, Ruiz-Bermejo M, Harir M, Schmitt-Kopplin P. 52.  et al. 2013. Molecular preservation in halite- and perchlorate-rich hypersaline subsurface deposits in the Salar Grande basin (Atacama Desert, Chile): implications for the search for molecular biomarkers on Mars. J. Geophys. Res. Biogeosci. 118:922–39 [Google Scholar]
  53. Ferreira LF, Britto MA, Fernandes CO, Reinhard K, Araújo A. 53.  2000. Paleoparasitology of Chagas disease revealed by infected tissues from Chilean mummies. Acta Trop. 75:79–84 [Google Scholar]
  54. Fletcher LE, Conley CA, Valdivia-Silva JE. 54.  et al. 2011. Determination of low bacterial concentrations in hyperarid Atacama soils: comparison of biochemical and microscopy methods with real-time quantitative PCR. Can. J. Microbiol. 57:953–63 [Google Scholar]
  55. Follmann G. 55.  1995. On the impoverishment of the lichen flora and the retrogression of the lichen vegetation in coastal central and northern Chile during the last decades. Cryptogam Bot. 5:224–31 [Google Scholar]
  56. Glavin DP, Cleaves HJ, Schubert M, Aubrey A, Bada JL. 56.  2004. New method for estimating bacterial cell abundances in natural samples by use of sublimation. Appl. Environ. Microbiol. 70:5923–28 [Google Scholar]
  57. Gomez-Escribano JP, Castro JF, Razmilic V, Chandra B, Andrews B. 57.  et al. 2015. The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics 16:485 [Google Scholar]
  58. Gómez-Silva B. 58.  1994. Adaptación cromática complementaria en dos cianobacterias del género Nostoc, nativas del norte de Chile. Anal. Microbiol. 2:22–24 [Google Scholar]
  59. Gómez-Silva B. 59.  2010. On the limits imposed to life by the hyperarid Atacama Desert in Northern Chile. Astrobiology: Emergence, Search and Detection of Life VA Basiuk 199–213 Los Angeles: Am. Sci. Publ. [Google Scholar]
  60. Gómez-Silva B, Olivares J, Rodríguez L. 60.  1990. Microalgae from northern Chile. I. La Rinconada, a hypersaline aquatic habitat in the Atacama Desert. Estud. Oceanol. 9:73–76 [Google Scholar]
  61. Gómez-Silva B, Rainey FA, Warren-Rhodes KA. 61.  2008. Atacama Desert soil microbiology. Microbiology of Extreme Soils P Dion, CS Nutiya 117–32 Berlin: Springer-Verlag [Google Scholar]
  62. Goodfellow M. 62.  2013. Actinobacterial diversity as a source of new drugs. Microbiologist 14:8–12 [Google Scholar]
  63. Gould SJ. 63.  1996. Planet of the bacteria. Wash. Post Horiz. 119:344 [Google Scholar]
  64. Gramain A, Chong-Diaz G, Guillermo D, Demergasso C, Lowenstein TK, McGenity TJ. 64.  2011. Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ. Microbiol. 13:2105–21 [Google Scholar]
  65. Griffith JD, Wilcox S, Powers DW, Nelson R, Baxter BK. 65.  2008. Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets. Astrobiology 8:215–28 [Google Scholar]
  66. Grosjean M. 66.  1994. Paleohydrology of the Laguna Lejia (north Chilean altiplano) and climatic implications for late-glacial times. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109:89–100 [Google Scholar]
  67. Grosjean M, van Leeuwen JFN, van der Knaap WO, Geyh MA, Ammann B. 67.  2001. A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Glob. Planet. Change 28:35–51 [Google Scholar]
  68. Guhl F, Jaramillo C, Yockteng R, Vallejo GA, Cárdenas-Arroyo F. 68.  1997. Trypanosoma cruzi DNA in human mummies. Lancet 349:1370 [Google Scholar]
  69. Hartley AJ, Chong G, Houston J, Mather A. 69.  2005. 150 million years of climatic stability: evidence from the Atacama Desert, Northern Chile. J. Geol. Soc. 162:421–24 [Google Scholar]
  70. Hedlund BP, Dodsworth JA, Murugapiran SK, Rinke C, Woyke T. 70.  2014. Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter.”. Extremophiles 18:865–75 [Google Scholar]
  71. Hold C, Andrews BA, Asenjo JA. 71.  2009. A stoichiometric model of Acidithiobacillus ferrooxidans ATTC 23270 for metabolic flux analysis. Biotechnol. Bioeng. 102:1448–59 [Google Scholar]
  72. Horikoshi K, Bull AT. 72.  2011. Prologue: Definition, categories, distribution, origin, evolution and pioneering studies, and emerging fields of extremophiles. Extremophiles Handbook 1 K Horikoshi, G Antranikian, AT Bull, F Robb, K Stetter 3–15 Tokyo: Springer Verlag [Google Scholar]
  73. Houston J. 73.  2006. Evaporation in the Atacama Desert: an empirical study of spatio-temporal variations and their causes. J. Hydrol. 330:402–12 [Google Scholar]
  74. Houston J, Butcher A, Ehren P. 74.  2011. The evaluation of brine prospects and the requirements for modifications to filing standards. Econ. Geol. 106:1225–39 [Google Scholar]
  75. Houston J, Hartley J. 75.  2003. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Clim. 23:1453–64 [Google Scholar]
  76. Jin VL, Evans RD. 76.  2010. Microbial 13C utilization patterns via stable isotope probing of phospholipid biomarkers in Mojave Desert soils exposed to ambient and elevated atmospheric CO2. Glob. Change Biol. 16:2334–44 [Google Scholar]
  77. Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB. 77.  2011. Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38 [Google Scholar]
  78. Lester ED, Satomi M, Ponce A. 78.  2007. Microflora of extreme arid Atacama Desert soils. Soil Biol. Biochem. 39:704–8 [Google Scholar]
  79. Lynch MDJ, Neufeld JD. 79.  2015. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13:217–29 [Google Scholar]
  80. Lynch RC, Darcy JL, Kane NC, Nemergut DR, Schmidt SK. 80.  2014. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Front. Microbiol. 5:698 [Google Scholar]
  81. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK. 81.  2012. The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J. Geophys. Res. Biogeosci. 117:G02028 [Google Scholar]
  82. Marsteller SJ, Torres-Rouff C, Knudson K. 82.  2011. Pre-Columbian Andean sickness ideology and the social experience of leishmaniasis: a contextualized analysis of bioarchaeological and paleopathological data from San Pedro de Atacama, Chile. Int. J. Paleopathol. 1:24–34 [Google Scholar]
  83. McKay CP, Friedmann EI, Gómez-Silva B, Cáceres-Villanueva L, Anderson DT, Landheim R. 83.  2003. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Niño of 1997–1998. Astrobiology 3:393–403 [Google Scholar]
  84. Merino MP, Andrews BA, Asenjo JA. 84.  2010. Stoichiometric model and metabolic flux analysis for Leptospirilum ferrooxidans. Biotechnol. Bioeng. 107:696–706 [Google Scholar]
  85. Merino MP, Andrews BA, Asenjo JA. 85.  2015. Stoichiometric model and flux balance analysis for a mixed culture of Leptospirillum ferriphilum and Ferroplasma acidiphilum. Biotechnol. Prog. 31:307–15 [Google Scholar]
  86. Moreno ML, Piubeli F, Bonfa MRL, Garcia MT, Durrant LR, Mellado E. 86.  2012. Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J. Appl. Microbiol. 113:550–59 [Google Scholar]
  87. Mühlhauser HA, Hrepic N, Mladinic P, Montecino V, Cabrera S. 87.  1995. Water quality and limnological features of a high altitude Andean lake, Chungará, in northern Chile. Rev. Chil. Hist. Nat. 68:341–49 [Google Scholar]
  88. Mühlsteinová R, Johansen JR, Pietrasiak N, Martin MP. 88.  2014. Polyphasic characterization of Kastovskya adunca gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from desert soils of the Atacama Desert, Chile. Phytotaxa 163:216–28 [Google Scholar]
  89. Mühlsteinová R, Johansen JR, Pietrasiak N, Martin MP. 89.  2014. Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 163:241–61 [Google Scholar]
  90. Nachtigall J, Kulik A, Helaly S, Bull AT, Goodfellow M, Asenjo JA. 90.  et al. 2011. Atacamycins A–C, 22-membered antitumor macrolactones produced by Streptomyces sp. C38. J. Antibiot. 64:775–80 [Google Scholar]
  91. Navarro-Gonzaléz R, Rainey FA, Molina P, Bagaley DR, Hollen B. 91.  et al. 2003. Mars-like soils in the Atacama Desert, Chile, and the dry limit to microbial life. Science 302:16089–94 [Google Scholar]
  92. Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A. 92.  et al. 2012. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553–66 [Google Scholar]
  93. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A. 93.  et al. 2011. Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76:2445–50 [Google Scholar]
  94. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA. 94.  et al. 2009. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie van Leeuwenhoek 95:121–33 [Google Scholar]
  95. Okoro CK, Bull AT, Mutreja A, Rong X, Huang Y, Goodfellow M. 95.  2010. Lechevalieria atacamensis sp. nov., Lechevalieria deserti sp. nov and Lechevalieria roselyniae sp. nov., isolated from hyperarid soils. Int. J. Syst. Evol. Microbiol. 60:296–300 [Google Scholar]
  96. Olivera-Nappa A, Picioreanu P, Asenjo JA. 96.  2010. Non-homogeneous biofilm modeling applied to bioleaching processes. Biotechnol. Bioeng. 106:660–76 [Google Scholar]
  97. Opfell JB, Zebal GP. 97.  1967. Ecological patterns of micro-organisms in desert soils. Life Sci. Space Res. 5:187–203 [Google Scholar]
  98. Orlando J, Alfaro M, Bravo L, Guevera R, Carú M. 98.  2010. Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event. Soil Biol. Biochem. 42:1183–88 [Google Scholar]
  99. Orlando J, Carú M, Pommerenke B, Braker G. 99.  2012. Diversity and activity of denitrifiers of Chilean arid soil ecosystems. Front. Microbiol. 3:101 [Google Scholar]
  100. Osorio-Santos K, Pietrasiak N, Bohunicka M, Misco LH, Kovácik L. 100.  et al. 2014. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur. J. Phycol. 49:450–70 [Google Scholar]
  101. Parada P, Morales P, Collao R, Bobadilla R, Badilla R. 101.  2013. Biomass production and inoculation of industrial bioleaching processes. Integration of Scientific and Industrial Knowledge on Biohydrometallurgy 825 N Guiliani, C Demergasso, R Quatrini, F Remonsellez, C Davis-Belmar , et al. pp. 296–300 Zurich: Trans. Tech. Publ. [Google Scholar]
  102. Parro V, de Diego-Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gille P. 102.  et al. 2011. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11:969–96 [Google Scholar]
  103. Patzelt DJ, Hodac L, Friedl T, Pietrasiak N, Johansen JR. 103.  2014. Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile. J. Phycol. 50:698–710 [Google Scholar]
  104. Paulino-Lima IG, Azua-Bustos A, Vicuna R, Gunzález-Silva C, Salas L. 104.  et al. 2013. Isolation of UVC-tolerant bacteria from the hyperarid Atacama Desert, Chile. Microb. Ecol. 65:325–35 [Google Scholar]
  105. Pointing SB, Belnap J. 105.  2012. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10:551–62 [Google Scholar]
  106. Prado B, Delmoral A, Quesada E, Rios R, Montechiva-Sanchez M, Campos V. 106.  1991. Numerical taxonomy of moderately halophilic gram-negative rods isolated from the Salar-de-Atacama, Chile. Syst. Appl. Microbiol. 14:275–81 [Google Scholar]
  107. Rasuk MC, Kurth D, Flores MR, Contreras M, Novoa F. 107.  et al. 2014. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68:483–94 [Google Scholar]
  108. Rateb ME, Hallyburton I, Houssen WE, Bull AT, Goodfellow M. 108.  et al. 2013. Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Adv. 3:14444–50 [Google Scholar]
  109. Rateb ME, Houssen WE, Arnold M, Abdelrahman MH, Deng H. 109.  et al. 2011. Chaxamycins A–D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J. Nat. Prod. 74:1491–99 [Google Scholar]
  110. Rateb ME, Houssen WE, Harrison WTA, Deng H, Okoro CK. 110.  et al. 2011. Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J. Nat. Prod. 74:1965–71 [Google Scholar]
  111. Remonsellez F, Galleguillos F, Moreno-Paz M, Parra V, Acosta M, Demergasso C. 111.  2009. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray. Microb. Biotechnol. 2:613–24 [Google Scholar]
  112. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ. 112.  et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–37 [Google Scholar]
  113. Rivadeneyra MA, Delgado G, Soriano Raamos-Cormenzana A, Delgado R. 113.  1999. Biomineralization of carbonates by Marinococcus albus and Marinococcus halophilus isolated from the Salar de Atacama (Chile). Curr. Microbiol. 39:53–7 [Google Scholar]
  114. Roldan M, Ascaso C, Wierzchos J. 114.  2014. Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. Appl. Environ. Microbiol. 80:2998–3006 [Google Scholar]
  115. Santhanam R, Okoro CK, Rong X, Huang Y, Bull AT. 115.  2012. Streptomyces atacamensis sp. nov., isolated from an extreme hyper-arid soil of the Atacama Desert, Chile. Int. J. Syst. Evol. Microbiol. 62:2680–84 [Google Scholar]
  116. Santhanam R, Okoro CK, Rong X, Huang Y, Bull AT, Goodfellow M. 116.  2012. Streptomyces deserti sp. nov., isolated from hyper-arid Atacama Desert soil. Antonie van Leeuwenhoek 101:575–81 [Google Scholar]
  117. Santhanam R, Rong X, Huang Y, Andrews BA, Asenjo JA, Goodfellow M. 117.  2012. Streptomyces bullii sp. nov., isolated from a hyper-arid Atacama Desert soil. Antonie van Leeuwenhoek 103:367–73 [Google Scholar]
  118. Schmidt SK, Naff CS, Lynch RC. 118.  2012. Fungal communities at the edge: ecological lessons from high alpine fungi. Fungal Ecol. 5:443–52 [Google Scholar]
  119. Schulz D, Beese P, Ohlendorf B, Erhard A, Zinecker J. 119.  et al. 2011. Abenquines A–D: aminoquinone derivatives produced by Streptomyces sp. strain DB634. J. Antibiot. 64:763–68 [Google Scholar]
  120. Shapiro B, Polz J, Martin F. 120.  2014. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Micobiol. 22:235–47 [Google Scholar]
  121. Sillitoe RH, Folk RL, Saric N. 121.  1996. Bacteria as mediators of copper sulfide enrichment during weathering. Science 272:1153–55 [Google Scholar]
  122. Squeo F, Warner BR, Aravena D, Espinoza D. 122.  2006. Bofedales: high altitude peatlands of the central Andes. Rev. Chil. Hist. Nat. 79:245–55 [Google Scholar]
  123. Thaker MN, Waglechner N, Wright GD. 123.  2014. Antibiotic resistance-mediated isolation of scaffold-specific natural products. Nat. Protoc. 9:1469–76 [Google Scholar]
  124. Travisany D, Cortéz MP, Latorre M, Genova AD, Budinich M. 124.  et al. 2014. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Res. Microbiol. 165:743–52 [Google Scholar]
  125. Valdes N, Rivera-Aray J, Bijman B, Escudero L, Demergasso C. 125.  et al. 2014. Draft genome sequence of Nitrincola sp. strain A-D6, an arsenic-resistant gammaproteobacterium isolated from a salt flat. Genome Announc. 2:6 [Google Scholar]
  126. Valdivia-Silva JE, Navarro-González R, Fletcher L, Perez-Montaña S, Condori-Apaza R, Mckay CP. 126.  2012. Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with Mars-like soils. Adv. Space Res. 50:108–22 [Google Scholar]
  127. Viles HA. 127.  2012. Microbial geomorphology: a neglected link between life and landscape. Geomorphology157–1586–16 [Google Scholar]
  128. Villar JSE, Edwards HGM, Seaward MRD. 128.  2005. Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst 130:730–37 [Google Scholar]
  129. Vitek P, Camara-Gallego B, Edwards HGM, Jehlicka J, Ascaso C, Wierzchos J. 129.  2013. Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J. 30:399–410 [Google Scholar]
  130. Vitek P, Edwards HGM, Jehlicka J, Ascaso C, de los Rios A. 130.  et al. 2010. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Phil. Trans. R. Soc. A 368:3205–21 [Google Scholar]
  131. Vitek P, Jehlicka J, Edwards HGM, Hutchinson I, Ascaso C, Wierzcheros J. 131.  2012. The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. Astrobiology 12:1095–99 [Google Scholar]
  132. Warren-Rhodes KA, Dungan JL, Piatek J, Stubbs K, Gómez-Silva B. 132.  et al. 2007. Ecology and spatial pattern of cyanobacterial community island patches in the Atacama Desert, Chile. J. Geophys. Res. Biogeosci. 112:G04S15 [Google Scholar]
  133. Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC. 133.  et al. 2006. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52:389–98 [Google Scholar]
  134. Warren-Rhodes K, Weinstein S, Dohm J, Piatek J, Minkley E. 134.  et al. 2007. Searching for microbial life remotely: satellite-to-rover habitat mapping in the Atacama Desert, Chile. J. Res. Geophys. Res. Biogeosci. 112:G04S05 [Google Scholar]
  135. Wierzchos J, Ascaso C, McKay CP. 135.  2006. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–22 [Google Scholar]
  136. Wrigley de Basanta D, Lado C, Estrada-Torres A, Stephenson SL. 136.  2009. Description and life cycle of a new Didymium (Myxomycetes) from arid areas of Argentina and Chile. Mycologia 101:707–16 [Google Scholar]
  137. Zhou J, He Z, Yang Y, Deng Y, Triage SF, Alvarez-Cohen L. 137.  2015. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6:1e02288–14 [Google Scholar]
  138. Ziolkowski LA, Wierzchos J, Davila AF, Slater GF. 138.  2013. Radiocarbon evidence for active endolithic microbial communities in the hyperarid core of the Atacama Desert. Astrobiology 13:607–16 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095236
Loading
/content/journals/10.1146/annurev-micro-102215-095236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error