For more than four decades now, I have been studying how genetic information is transformed into protein-based cellular functions. This has included investigations into the mechanisms supporting cellular localization of proteins, disulfide bond formation, quality control of membranes, and translation. I tried to extract new principles and concepts that are universal among living organisms from our observations of . While I wanted to distill complex phenomena into basic principles, I also tried not to overlook any serendipitous observations. In the first part of this article, I describe personal experiences during my studies of the Sec pathway, which have centered on the SecY translocon. In the second part, I summarize my views of the recent revival of translation studies, which has given rise to the concept that nonuniform polypeptide chain elongation is relevant for the subsequent fates of newly synthesized proteins. Our studies of a class of regulatory nascent polypeptides advance this concept by showing that the dynamic behaviors of the extraribosomal part of the nascent chain affect the ongoing translation process. Vibrant and regulated molecular interactions involving the ribosome, mRNA, and nascent polypeptidyl-tRNA are based, at least partly, on their autonomously interacting properties.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akiyama Y, Ito K. 1.  1985. The SecY membrane component of the bacterial protein export machinery—analysis by new electrophoretic methods for integral membrane proteins. EMBO J. 4:3351–56 [Google Scholar]
  2. Akiyama Y, Ito K. 2.  1986. Overproduction, isolation and determination of the amino-terminal sequence of the SecY protein, a membrane protein involved in protein export in Escherichia coli. Eur. J. Biochem. 159:263–66 [Google Scholar]
  3. Akiyama Y, Ito K. 3.  1987. Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli. EMBO J. 6:3465–70 [Google Scholar]
  4. Akiyama Y, Ito K. 4.  1989. Export of Escherichia coli alkaline phosphatase attached to an integral membrane protein, SecY. J. Biol. Chem. 264:437–42 [Google Scholar]
  5. Akiyama Y, Ito K. 5.  1990. SecY protein, a membrane-embedded secretion factor of E. coli, is cleaved by the ompT protease in vitro. Biochem. Biophys. Res. Commun. 167:711–15 [Google Scholar]
  6. Akiyama Y, Kanehara K, Ito K. 6.  2004. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J. 23:4434–42 [Google Scholar]
  7. Akiyama Y, Ogura T, Ito K. 7.  1994. Involvement of FtsH in protein assembly into and through the membrane: I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J. Biol. Chem. 269:5218–24 [Google Scholar]
  8. Bardwell JC, McGovern K, Beckwith J. 8.  1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–89 [Google Scholar]
  9. Beckwith J. 9.  2013. Fifty years fused to lac. Annu. Rev. Microbiol. 67:1–19 [Google Scholar]
  10. Bedouelle H, Bassford PJ Jr, Fowler AV, Zabin I, Beckwith J, Hofnung M. 10.  1980. Mutations which alter the function of the signal sequence of the maltose binding protein of Escherichia coli. Nature 285:78–81 [Google Scholar]
  11. Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T. 11.  et al. 2011. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLOS Biol. 9:e1000581 [Google Scholar]
  12. Blobel G, Dobberstein B. 12.  1975. Transfer of proteins across membranes: I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67:835–51 [Google Scholar]
  13. Blobel G, Dobberstein B. 13.  1975. Transfer of proteins across membranes: II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67:852–62 [Google Scholar]
  14. Borg A, Ehrenberg M. 14.  2015. Determinants of the rate of mRNA translocation in bacterial protein synthesis. J. Mol. Biol. 427:1835–47 [Google Scholar]
  15. Butkus ME, Prundeanu LB, Oliver DB. 15.  2003. Translocon “pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J. Bacteriol. 185:6719–22 [Google Scholar]
  16. Chadani Y, Niwa T, Chiba S, Taguchi H, Ito K. 16.  2016. Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing. PNAS 113:E829–38 [Google Scholar]
  17. Chiba S, Akiyama Y, Mori H, Matsuo E, Ito K. 17.  2000. Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Rep. 1:47–52 [Google Scholar]
  18. Chiba S, Ito K. 18.  2012. Multisite ribosomal stalling: a unique mode of regulatory nascent chain action revealed for MifM. Mol. Cell 47:863–72 [Google Scholar]
  19. Chiba S, Ito K. 19.  2015. MifM monitors total YidC activities of Bacillus subtilis, including that of YidC2, the target of regulation. J. Bacteriol. 197:99–107 [Google Scholar]
  20. Chiba S, Ito K, Akiyama Y. 20.  2006. The Escherichia coli plasma membrane contains two PHB (prohibitin homology) domain protein complexes of opposite orientations. Mol. Microbiol. 60:448–57 [Google Scholar]
  21. Chiba S, Kanamori T, Ueda T, Akiyama Y, Pogliano K, Ito K. 21.  2011. Recruitment of a species-specific translational arrest module to monitor different cellular processes. PNAS 108:6073–78 [Google Scholar]
  22. Chiba S, Lamsa A, Pogliano K. 22.  2009. A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. EMBO J. 28:3461–75 [Google Scholar]
  23. Cymer F, von Heijne G. 23.  2013. Cotranslational folding of membrane proteins probed by arrest-peptide-mediated force measurements. PNAS 110:14640–45 [Google Scholar]
  24. Deshaies RJ, Schekman R. 24.  1987. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105:633–45 [Google Scholar]
  25. Duncan CD, Mata J. 25.  2011. Widespread cotranslational formation of protein complexes. PLOS Genet. 7:e1002398 [Google Scholar]
  26. Emr SD, Hanley-Way S, Silhavy TJ. 26.  1981. Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23:79–88 [Google Scholar]
  27. Emr SD, Hedgpeth J, Clement JM, Silhavy TJ, Hofnung M. 27.  1980. Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature 285:82–85 [Google Scholar]
  28. Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I Jr, Bustamante C. 28.  2015. Ribosome: Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 348:457–60 [Google Scholar]
  29. Gong F, Yanofsky C. 29.  2002. Instruction of translating ribosome by nascent peptide. Science 297:1864–67 [Google Scholar]
  30. Gorlich D, Rapoport TA. 30.  1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615–30 [Google Scholar]
  31. Gumbart J, Schreiner E, Wilson DN, Beckmann R, Schulten K. 31.  2012. Mechanisms of SecM-mediated stalling in the ribosome. Biophys. J. 103:331–41 [Google Scholar]
  32. Hunt JF, Weinkauf S, Henry L, Fak JJ, McNicholas P. 32.  et al. 2002. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297:2018–26 [Google Scholar]
  33. Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E. 33.  et al. 2006. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127:789–801 [Google Scholar]
  34. Inaba K, Takahashi YH, Fujieda N, Kano K, Miyoshi H, Ito K. 34.  2004. DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation. J. Biol. Chem. 279:6761–68 [Google Scholar]
  35. Inaba K, Takahashi YH, Ito K, Hayashi S. 35.  2006. Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB. PNAS 103:287–92 [Google Scholar]
  36. Ishihama A, Ito K. 36.  1972. Subunits of RNA polymerase in function and structure. 2. Reconstitution of Escherichia coli RNA polymerase from isolated subunits. J. Mol. Biol. 72:111–23 [Google Scholar]
  37. Ishii E, Chiba S, Hashimoto N, Kojima S, Homma M. 37.  et al. 2015. Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria. PNAS 112:E5513–22 [Google Scholar]
  38. Ito K. 38.  1972. Regulatory mechanism of tryptophan operon in Escherichia coli—possible interaction between trpR and trpS gene products. Mol. Gen. Genet. 115:349–63 [Google Scholar]
  39. Ito K, Akiyama Y. 39.  1985. Protein blotting through a detergent layer, a simple method for detecting integral membrane proteins separated by SDS-polyacrylamide gel electrophoresis. Biochem. Biophys. Res. Commun. 133:214–21 [Google Scholar]
  40. Ito K, Akiyama Y. 40.  1991. In vivo analysis of integration of membrane proteins in Escherichia coli. Mol. Microbiol. 5:2243–53 [Google Scholar]
  41. Ito K, Akiyama Y. 41.  2005. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59:211–31 [Google Scholar]
  42. Ito K, Bassford PJ. Beckwith J. 42.  Jr, 1981. Protein localization in E. coli: Is there a common step in the secretion of periplasmic and outer-membrane proteins?. Cell 24:707–17 [Google Scholar]
  43. Ito K, Cerretti DP, Nashimoto H, Nomura M. 43.  1984. Characterization of an amber mutation in the structural gene for ribosomal protein L15, which impairs the expression of the protein export gene, secY, in Escherichia coli. EMBO J. 3:2319–24 [Google Scholar]
  44. Ito K, Chadani Y, Nakamori K, Chiba S, Akiyama Y, Abo T. 44.  2011. Nascentome analysis uncovers futile protein synthesis in Escherichia coli. PLOS ONE 6:e28413 [Google Scholar]
  45. Ito K, Chiba S. 45.  2013. Arrest peptides: cis-acting modulators of translation. Annu. Rev. Biochem. 82:171–202 [Google Scholar]
  46. Ito K, Date T, Wickner W. 46.  1980. Synthesis, assembly into the cytoplasmic membrane, and proteolytic processing of the precursor of coliphage M13 coat protein. J. Biol. Chem. 255:2123–30 [Google Scholar]
  47. Ito K, Hiraga S, Yura T. 47.  1969. Tryptophanyl transfer RNA synthetase and expression of tryptophan operon in trpS mutants of Escherichia coli. Genetics 61:521–38 [Google Scholar]
  48. Ito K, Inaba K. 48.  2008. The disulfide bond formation (Dsb) system. Curr. Opin. Struct. Biol. 18:450–58 [Google Scholar]
  49. Ito K, Iwakura Y, Ishihama A. 49.  1975. Biosynthesis of RNA polymerase in Escherichia coli. 3. Identification of intermediates in assembly of RNA polymerase. J. Mol. Biol. 96:257–71 [Google Scholar]
  50. Ito K, Mandel G, Wickner W. 50.  1979. Soluble precursor of an integral membrane protein: synthesis of procoat protein in Escherichia coli infected with bacteriophage M13. PNAS 76:1199–203 [Google Scholar]
  51. Ito K, Matsuo E, Akiyama Y. 51.  1999. A class of integral membrane proteins will be overlooked by the ‘proteome’ study that is based on two-dimensional gel electrophoresis. Mol. Microbiol. 31:1600–1 [Google Scholar]
  52. Ito K, Sato T, Yura T. 52.  1977. Synthesis and assembly of membrane proteins in Escherichia coli. Cell 11:551–59 [Google Scholar]
  53. Ito K, Wittekind M, Nomura M, Shiba K, Yura T. 53.  et al. 1983. A temperature-sensitive mutant of Escherichia coli exhibiting slow processing of exported proteins. Cell 32:789–97 [Google Scholar]
  54. Kamitani S, Akiyama Y, Ito K. 54.  1992. Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J. 11:57–62 [Google Scholar]
  55. Kihara A, Akiyama Y, Ito K. 55.  1995. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. PNAS 92:4532–36 [Google Scholar]
  56. Kihara A, Akiyama Y, Ito K. 56.  1996. A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. EMBO J. 15:6122–31 [Google Scholar]
  57. Kihara A, Akiyama Y, Ito K. 57.  1999. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J. 18:2970–81 [Google Scholar]
  58. Kishigami S, Akiyama Y, Ito K. 58.  1995. Redox states of DsbA in the periplasm of Escherichia coli. FEBS Lett. 364:55–58 [Google Scholar]
  59. Kishigami S, Kanaya E, Kikuchi M, Ito K. 59.  1995. DsbA-DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA. J. Biol. Chem. 270:17072–74 [Google Scholar]
  60. Kobayashi T, Ito K. 60.  1999. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. EMBO J. 18:1192–98 [Google Scholar]
  61. Kobayashi T, Kishigami S, Sone M, Inokuchi H, Mogi T, Ito K. 61.  1997. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. PNAS 94:11857–62 [Google Scholar]
  62. Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K. 62.  et al. 2014. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509:516–20 [Google Scholar]
  63. Li GW, Oh E, Weissman JS. 63.  2012. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484:538–41 [Google Scholar]
  64. Lim B, Miyazaki R, Neher S, Siegele DA, Ito K. 64.  et al. 2013. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLOS Biol. 11:e1001735 [Google Scholar]
  65. Manoil C, Beckwith J. 65.  1986. A genetic approach to analyzing membrane protein topology. Science 233:1403–8 [Google Scholar]
  66. Matsuo E, Sampei G, Mizobuchi K, Ito K. 66.  1999. The plasmid F OmpP protease, a homologue of OmpT, as a potential obstacle to E. coli-based protein production. FEBS Lett. 461:6–8 [Google Scholar]
  67. McNicholas P, Salavati R, Oliver D. 67.  1997. Dual regulation of Escherichia coli secA translation by distinct upstream elements. J. Mol. Biol. 265:128–41 [Google Scholar]
  68. Mohammad F, Woolstenhulme CJ, Green R, Buskirk AR. 68.  2016. Clarifying the translational pausing landscape in bacteria by ribosome profiling. Cell Rep. 14:686–94 [Google Scholar]
  69. Mori H, Ito K. 69.  2001. An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. PNAS 98:5128–33 [Google Scholar]
  70. Mori H, Ito K. 70.  2006. Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking. PNAS 103:16159–64 [Google Scholar]
  71. Mori H, Ito K. 71.  2006. The long alpha-helix of SecA is important for the ATPase coupling of translocation. J. Biol. Chem. 281:36249–56 [Google Scholar]
  72. Murakami A, Nakatogawa H, Ito K. 72.  2004. Translation arrest of SecM is essential for the basal and regulated expression of SecA. PNAS 101:12330–35 [Google Scholar]
  73. Muto H, Nakatogawa H, Ito K. 73.  2006. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol. Cell 22:545–52 [Google Scholar]
  74. Nakamori K, Chiba S, Ito K. 74.  2014. Identification of a SecM segment required for export-coupled release from elongation arrest. FEBS Lett. 588:3098–103 [Google Scholar]
  75. Nakatogawa H, Ito K. 75.  2001. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell 7:185–92 [Google Scholar]
  76. Nakatogawa H, Ito K. 76.  2002. The ribosomal exit tunnel functions as a discriminating gate. Cell 108:629–36 [Google Scholar]
  77. Nakatogawa H, Murakami A, Ito K. 77.  2004. Control of SecA and SecM translation by protein secretion. Curr. Opin. Microbiol. 7:145–50 [Google Scholar]
  78. Nakatogawa H, Murakami A, Mori H, Ito K. 78.  2005. SecM facilitates translocase function of SecA by localizing its biosynthesis. Genes Dev. 19:436–44 [Google Scholar]
  79. Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L. 79.  et al. 2015. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. 12:1533–40 [Google Scholar]
  80. Oliver D, Norman J, Sarker S. 80.  1998. Regulation of Escherichia coli secA by cellular protein secretion proficiency requires an intact gene X signal sequence and an active translocon. J. Bacteriol. 180:5240–42 [Google Scholar]
  81. Oliver DB, Beckwith J. 81.  1982. Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 30:311–19 [Google Scholar]
  82. Park E, Rapoport TA. 82.  2012. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu. Rev. Biophys. 41:21–40 [Google Scholar]
  83. Pechmann S, Willmund F, Frydman J. 83.  2013. The ribosome as a hub for protein quality control. Mol. Cell 49:411–21 [Google Scholar]
  84. Pogliano KJ, Beckwith J. 84.  1993. The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself. Genetics 133:763–73 [Google Scholar]
  85. Pollitt S, Zalkin H. 85.  1983. Role of primary structure and disulfide bond formation in beta-lactamase secretion. J. Bacteriol. 153:27–32 [Google Scholar]
  86. Puglisi JD. 86.  2015. Protein synthesis: the delicate dance of translation and folding. Science 348:399–400 [Google Scholar]
  87. Saikawa N, Akiyama Y, Ito K. 87.  2004. FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J. Struct. Biol. 146:123–29 [Google Scholar]
  88. Saito A, Hizukuri Y, Matsuo E, Chiba S, Mori H. 88.  et al. 2011. Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. PNAS 108:13740–45 [Google Scholar]
  89. Sakoh M, Ito K, Akiyama Y. 89.  2005. Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. J. Biol. Chem. 280:33305–10 [Google Scholar]
  90. Samuelson JC, Chen M, Jiang F, Moller I, Wiedmann M. 90.  et al. 2000. YidC mediates membrane protein insertion in bacteria. Nature 406:637–41 [Google Scholar]
  91. Sarker S, Rudd KE, Oliver D. 91.  2000. Revised translation start site for secM defines an atypical signal peptide that regulates Escherichia coli secA expression. J. Bacteriol. 182:5592–95 [Google Scholar]
  92. Shiba K, Ito K, Yura T, Cerretti DP. 92.  1984. A defined mutation in the protein export gene within the spc ribosomal protein operon of Escherichia coli: isolation and characterization of a new temperature-sensitive secY mutant. EMBO J. 3:631–35 [Google Scholar]
  93. Shieh YW, Minguez P, Bork P, Auburger JJ, Guilbride DL. 93.  et al. 2015. Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350:678–80 [Google Scholar]
  94. Shimohata N, Chiba S, Saikawa N, Ito K, Akiyama Y. 94.  2002. The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 7:653–62 [Google Scholar]
  95. Shimohata N, Nagamori S, Akiyama Y, Kaback HR, Ito K. 95.  2007. SecY alterations that impair membrane protein folding and generate a membrane stress. J. Cell Biol. 176:307–17 [Google Scholar]
  96. Shimokawa-Chiba N, Kumazaki K, Tsukazaki T, Nureki O, Ito K, Chiba S. 96.  2015. Hydrophilic microenvironment required for the channel-independent insertase function of YidC protein. PNAS 112:5063–68 [Google Scholar]
  97. Shultz J, Silhavy TJ, Berman ML, Fiil N, Emr SD. 97.  1982. A previously unidentified gene in the spc operon of Escherichia coli K12 specifies a component of the protein export machinery. Cell 31:227–35 [Google Scholar]
  98. Sohmen D, Chiba S, Shimokawa-Chiba N, Innis CA, Berninghausen O. 98.  et al. 2015. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat. Commun. 6:6941 [Google Scholar]
  99. Taura T, Baba T, Akiyama Y, Ito K. 99.  1993. Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J. Bacteriol. 175:7771–75 [Google Scholar]
  100. Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S. 100.  et al. 2011. Structure and function of a membrane component SecDF that enhances protein export. Nature 474:235–38 [Google Scholar]
  101. Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T. 101.  et al. 2008. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–91 [Google Scholar]
  102. Ueguchi C, Wittekind M, Nomura M, Akiyama Y, Ito K. 102.  1989. The secY-rpmJ region of the spc ribosomal protein operon in Escherichia coli: Structural alterations affecting secY expression. Mol. Gen. Genet. 217:1–5 [Google Scholar]
  103. Ulbrandt ND, Newitt JA, Bernstein HD. 103.  1997. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88:187–96 [Google Scholar]
  104. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E. 104.  et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44 [Google Scholar]
  105. Vassylyev DG, Mori H, Vassylyeva MN, Tsukazaki T, Kimura Y. 105.  et al. 2006. Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J. Mol. Biol. 364:248–58 [Google Scholar]
  106. Voss NR, Gerstein M, Steitz TA, Moore PB. 106.  2006. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360:893–906 [Google Scholar]
  107. Wickner W. 107.  1979. The assembly of proteins into biological membranes: the membrane trigger hypothesis. Annu. Rev. Biochem. 48:23–45 [Google Scholar]
  108. Wilson DN, Beckmann R. 108.  2011. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21:274–82 [Google Scholar]
  109. Yamamori T, Ito K, Nakamura Y, Yura T. 109.  1978. Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. J. Bacteriol. 134:1133–40 [Google Scholar]
  110. Yanagitani K, Kimata Y, Kadokura H, Kohno K. 110.  2011. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 331:586–89 [Google Scholar]
  111. Yura T, Tobe T, Ito K, Osawa T. 111.  1984. Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. PNAS 81:6803–7 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error