The human intestine harbors a dense microbial ecosystem (microbiota) that is different between individuals, dynamic over time, and critical for aspects of health and disease. Dietary polysaccharides directly shape the microbiota because of a gap in human digestive physiology, which is equipped to assimilate only proteins, lipids, simple sugars, and starch, leaving nonstarch polysaccharides as major nutrients reaching the microbiota. A mutualistic role of gut microbes is to digest dietary complex carbohydrates, liberating host-absorbable energy via fermentation products. Emerging data indicate that polysaccharides play extensive roles in host–gut microbiota symbiosis beyond dietary polysaccharide digestion, including microbial interactions with endogenous host glycans and the importance of microbial polysaccharides. In this review, we consider multiple mechanisms through which polysaccharides mediate aspects of host-microbe symbiosis in the gut, including some affecting health. As host and microbial metabolic pathways are intimately connected with diet, we highlight the potential to manipulate this system for health.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ainsworth S, Sadovskaya I, Vinogradov E, Courtin P, Guerardel Y. 1.  et al. 2014. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 5:3e00880–14 [Google Scholar]
  2. Arana DM, Prieto D, Roman E, Nombela C, Alonso-Monge R, Pla J. 2.  2009. The role of the cell wall in fungal pathogenesis. Microb. Biotechnol. 2:3308–20 [Google Scholar]
  3. Avci FY, Kasper DL. 3.  2010. How bacterial carbohydrates influence the adaptive immune system. Annu. Rev. Immunol. 28:1107–30 [Google Scholar]
  4. Axelsson MA, Asker N, Hansson GC. 4.  1998. O-glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J. Biol. Chem. 273:3018864–70 [Google Scholar]
  5. Bågenholm V, Reddy SK, Bouraoui H, Morrill J, Kulcinskaja E. 5.  et al. 2017. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus: enzyme synergy and crystal structure of a β-mannanase. J. Biol. Chem. 292:229–43 [Google Scholar]
  6. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML. 6.  et al. 2013. Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS 110:2610771–76 [Google Scholar]
  7. Barr JJ, Youle M, Rohwer F. 7.  2013. Innate and acquired bacteriophage-mediated immunity. Bacteriophage 3:3e25857 [Google Scholar]
  8. Bayer ME, Thurow H, Bayer MH. 8.  1979. Penetration of the polysaccharide capsule of Escherichia coli (Bi161/42) by bacteriophage K29. Virology 94:195–118 [Google Scholar]
  9. Bello FD, Walter J, Hertel C, Hammes WP. 9.  2001. In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst. Appl. Microbiol. 24:2232–37 [Google Scholar]
  10. Ben David Y, Dassa B, Borovok I, Lamed R, Koropatkin NM. 10.  et al. 2015. Ruminococcal cellulosome systems from rumen to human. Env. Microbiol. 17:93407–26 [Google Scholar]
  11. Benjdia A, Martens EC, Gordon JI, Berteau O. 11.  2011. Sulfatases and a radical S-adenosyl-l-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont. Bacteroides thetaiotaomicron. J. Biol. Chem. 286:2925973–82 [Google Scholar]
  12. Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreiber K. 12.  et al. 2007. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J. Bacteriol. 189:41311–21 [Google Scholar]
  13. Bergstrom K, Fu J, Johansson ME, Liu X, Gao N. 13.  et al. 2017. Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 10:91–103 [Google Scholar]
  14. Bertozzi CR, Rabuka D. 14.  2009. Structural basis of glycan diversity. Essentials of Glycobiology A Varki, RD Cummings, J Esko 23–36 New York: Cold Spring Harb. Press, 2nd ed.. [Google Scholar]
  15. Bjursell MK, Martens EC, Gordon JI. 15.  2006. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroidesthetaiotaomicron, to the suckling period. J. Biol. Chem. 281:4736269–79 [Google Scholar]
  16. Booth SJ, Van Tassell RL, Johnson JL, Wilkins TD. 16.  1979. Bacteriophages of Bacteroides. Rev. Infect. Dis. 1:2325–36 [Google Scholar]
  17. Bry L, Falk PG, Midtvedt T, Gordon JI. 17.  1996. A model of host-microbial interactions in an open mammalian ecosystem. Science 273:52801380–83 [Google Scholar]
  18. Burt S, Meldrum S, Woods DR, Jones DT. 18.  1978. Colonial variation, capsule formation, and bacteriophage resistance in Bacteroides thetaiotaomicron. Appl. Environ. Microbiol. 35:2439–43 [Google Scholar]
  19. Caffall KH, Mohnen D. 19.  2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344:141879–1900 [Google Scholar]
  20. Cameron EA, Sperandio V. 20.  2015. Frenemies: signaling and nutritional integration in pathogen-microbiota-host interactions. Cell Host Microbe 18:3275–84 [Google Scholar]
  21. Chatzidaki-Livanis M, Coyne MJ, Comstock LE. 21.  2009. A family of transcriptional antitermination factors necessary for synthesis of the capsular polysaccharides of Bacteroides fragilis. J. Bacteriol. 191:237288–95 [Google Scholar]
  22. Chatzidaki-Livanis M, Weinacht KG, Comstock LE. 22.  2010. Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis. PNAS 107:2611976–80 [Google Scholar]
  23. Chen XY, Woodward A, Zijlstra RT, Gänzlea MG. 23.  2014. Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl. Environ. Microbiol. 80:185752–60 [Google Scholar]
  24. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC. 24.  et al. 2014. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:2412–21 [Google Scholar]
  25. Cockburn DW, Koropatkin NM. 25.  2016. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol. 428:163230–52 [Google Scholar]
  26. Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM. 26.  et al. 2015. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol. Microbiol. 95:2209–30 [Google Scholar]
  27. Coyne MJ, Chatzidaki-Livanis M, Paoletti LC, Comstock LE. 27.  2008. Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis. PNAS 105:3513099–104 [Google Scholar]
  28. Coyne MJ, Comstock LE. 28.  2008. Niche-specific features of the intestinal Bacteroidales. J. Bacteriol. 190:2736–42 [Google Scholar]
  29. Coyne MJ, Tzianabos AO, Mallory BC, Carey VJ, Kasper DL, Comstock LE. 29.  2001. Polysaccharide biosynthesis locus required for virulence of Bacteroides fragilis. Infect. Immun. 69:74342–50 [Google Scholar]
  30. Coyne MJ, Weinacht KG, Krinos CM, Comstock LE. 30.  2003. Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. PNAS 100:1810446–51 [Google Scholar]
  31. Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA. 31.  et al. 2015. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517:7533165–69 Corrigendum. 2015. Nature 520:7547388 [Google Scholar]
  32. De Palencia PF, Werning ML, Sierra-Filardi E, Dueñas MT, Irastorza A. 32.  et al. 2009. Probiotic properties of the 2-substituted (1,3)-β-d-glucan-producing bacterium Pediococcusparvulus 2.6. Appl. Environ. Microbiol. 75:144887–91 [Google Scholar]
  33. Denou E, Pridmore RD, Berger B, Panoff JM, Arigoni F, Brüssow H. 33.  2008. Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J. Bacteriol. 190:93161–68 [Google Scholar]
  34. Dertli E, Colquhoun IJ, Gunning AP, Bongaerts RJ, Le Gall G. 34.  et al. 2013. Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. J. Biol. Chem. 288:4431938–51 [Google Scholar]
  35. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA. 35.  et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:51339–1353.e21 [Google Scholar]
  36. Despres J, Forano E, Lepercq P, Comtet-Marre S, Jubelin G. 36.  et al. 2016. Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genom 17:147 [Google Scholar]
  37. Despres J, Forano E, Lepercq P, Comtet-Marre S, Jubelin G. 37.  et al. 2016. Xylan degradation by the human gut Bacteroides xylanisolvens XB1AT involves two distinct gene clusters that are linked at the transcriptional level. BMC Genom 17:326 [Google Scholar]
  38. Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J. 38.  et al. 2014. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158:61402–14 [Google Scholar]
  39. Earle KAA, Billings G, Sigal M, Lichtman JSS, Hansson GCC. 39.  et al. 2015. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18:4478–88 [Google Scholar]
  40. Ejby M, Fredslund F, Andersen JM, Vujičić Žagar A, Henriksen JR. 40.  et al. 2016. An ATP binding cassette transporter mediates the uptake of α-(1,6)-linked dietary oligosaccharides in Bifidobacterium and correlates with competitive growth on these substrates. J. Biol. Chem. 291:3820220–31 [Google Scholar]
  41. Ejby M, Fredslund F, Vujicic-Zagar A, Svensson B, Slotboom DJ, Abou Hachem M. 41.  2013. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04. Mol. Microbiol. 90:51100–12 [Google Scholar]
  42. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. 42.  2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11:7497–504 [Google Scholar]
  43. Engevik MA, Aihara E, Montrose MH, Shull GE, Hassett DJ, Worrell RT. 43.  2013. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am. J. Physiol. Gastrointest. Liver Physiol. 305:10G697–711 [Google Scholar]
  44. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J. 44.  et al. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. PNAS 109:62108–13 [Google Scholar]
  45. Ferrario C, Milani C, Mancabelli L, Lugli GA, Duranti S. 45.  et al. 2016. Modulation of the eps-ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiol. Ecol. 92:41–12 [Google Scholar]
  46. Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. 46.  2014. Gut microbiota-produced succinate promotes C.difficile infection after antibiotic treatment or motility disturbance.. Cell Host Microbe 16:6770–77 [Google Scholar]
  47. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 47.  2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:4289–306 [Google Scholar]
  48. Foley MH, Cockburn DW, Koropatkin NM. 48.  2016. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell. Mol. Life Sci. 73:142603–17 [Google Scholar]
  49. Fu J, Wei B, Wen T, Johansson MEV, Liu X. 49.  et al. 2011. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Investig. 121:41657–66 [Google Scholar]
  50. Garrido D, Kim JH, German JB, Raybould HE, Mills DA. 50.  2011. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLOS ONE 6:3e17315 [Google Scholar]
  51. Gupta DS, Jann B, Schmidt G, Golecki JR, Orskov I. 51.  et al. 1982. Coliphage K5, specific for E.coli exhibiting the capsular K5 antigen. FEMS Microbiol. Lett. 14:75–78 [Google Scholar]
  52. Hehemann J-H, Boraston AB, Czjzek M. 52.  2014. A sweet new wave: Structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr. Opin. Struct. Biol. 28:77–86 [Google Scholar]
  53. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 53.  2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:7290908–12 [Google Scholar]
  54. Hehemann J-H, Kelly AG, Pudlo NA, Martens EC, Boraston AB. 54.  2012. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. PNAS 109:4819786–91 [Google Scholar]
  55. Holmén Larsson JM, Thomsson KA, Rodríguez-Piñeiro AM, Karlsson H, Hansson GC. 55.  2013. Studies of mucus in mouse stomach, small intestine, and colon: III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. Am. J. Physiol. Gastrointest. Liver Physiol. 305:5G357–63 [Google Scholar]
  56. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. 56.  1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. PNAS 96:179833–38 [Google Scholar]
  57. Hoskins LC, Boulding ET. 57.  1981. Mucin degradation in human colon ecosystems: evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J. Clin. Investig. 67:1163–72 [Google Scholar]
  58. Johansson ME, Sjovall H, Hansson GC. 58.  2013. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10:6352–61 [Google Scholar]
  59. Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. 59.  2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. PNAS 105:3915064–69 [Google Scholar]
  60. Jones SE, Knight KL. 60.  2012. Bacillus subtilis-mediated protection from Citrobacter rodentium-associated enteric disease requires espH and functional flagella. Infect. Immun. 80:2710–19 [Google Scholar]
  61. Jones SE, Paynich ML, Kearns DB, Knight KL. 61.  2014. Protection from intestinal inflammation by bacterial exopolysaccharides. J. Immunol. 192:104813–20 [Google Scholar]
  62. Kashyap PC, Marcobal A, Ursell LK, Smits SA, Sonnenburg ED. 62.  et al. 2013. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. PNAS 110:4217059–64 [Google Scholar]
  63. Keller R, Traub N. 63.  1974. The characterization of Bacteroides fragilis bacteriophage recovered from animal sera: observations on the nature of Bacteroides phage carrier cultures. J. Gen. Virol. 24:1179–89 [Google Scholar]
  64. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. 64.  1995. Sequence and expression of a candidate for the human Secretor blood group α(1,2)fucosyltransferase gene (FUT2): Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270:4640–49 [Google Scholar]
  65. Kudelka MR, Hinrichs BH, Darby T, Moreno CS, Nishio H. 65.  et al. 2016. Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. PNAS 113:5114787–92 [Google Scholar]
  66. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS. 66.  et al. 2014. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506:498–502 [Google Scholar]
  67. Lebeer S, Claes IJJ, Verhoeven TLA, Vanderleyden J, De Keersmaecker SCJ. 67.  2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotechnol. 4:3368–74 [Google Scholar]
  68. Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Mühlenhoff M. 68.  et al. 2007. The structures of bacteriophages K1E and K1–5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J. Mol. Biol. 371:3836–49 [Google Scholar]
  69. Lindström C, Holst O, Nilsson L, Oste R, Andersson KE. 69.  2012. Effects of Pediococcus parvulus 2.6 and its exopolysaccharide on plasma cholesterol levels and inflammatory markers in mice. AMB Express 2:166 [Google Scholar]
  70. Liu CH, Lee SM, Vanlare JM, Kasper DL, Mazmanian SK. 70.  2008. Regulation of surface architecture by symbiotic bacteria mediates host colonization. PNAS 105:103951–56 [Google Scholar]
  71. Looijesteijn PJ, Trapet L, De Vries E, Abee T, Hugenholtz J. 71.  2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64:1–271–80 [Google Scholar]
  72. Lynch J, Sonnenburg J. 72.  2012. Prioritization of a plant polysaccharide over a mucus carbohydrate is enforced by a Bacteroides hybrid two‐component system. Mol. Microbiol. 85:3478–91 [Google Scholar]
  73. Martens EC, Chiang HC, Gordon JI. 73.  2008. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:5447–57 [Google Scholar]
  74. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. 74.  2009. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284:3724673–77 [Google Scholar]
  75. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M. 75.  et al. 2011. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLOS Biol 9:12e1001221 [Google Scholar]
  76. Martens EC, Roth R, Heuser JE, Gordon JI. 76.  2009. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284:2718445–57 [Google Scholar]
  77. Mazmanian S, Liu C, Tzianabos A, Kasper D. 77.  2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:1107–18 [Google Scholar]
  78. Mazmanian SK, Kasper DL. 78.  2006. The love-hate relationship between bacterial polysaccharides and the host immune system. Nat. Rev. Immunol. 6:11849–58 [Google Scholar]
  79. Mazmanian SK, Round JL, Kasper DL. 79.  2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:7195620–25 [Google Scholar]
  80. McGuckin MA, Linden SK, Sutton P, Florin TH. 80.  2011. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9:4265–78 [Google Scholar]
  81. McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK. 81.  et al. 2013. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLOS Biol 11:8e1001637 [Google Scholar]
  82. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M. 82.  2005. Exploring Lactobacillus plantarum genome diversity by using microarrays. J. Bacteriol. 187:176119–27 [Google Scholar]
  83. Morrill J, Kulcinskaja E, Sulewska AM, Lahtinen S, Stalbrand H. 83.  et al. 2015. The GH5 1,4-beta-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. BMC Biochem 16:26 [Google Scholar]
  84. Neff CP, Rhodes ME, Arnolds KL, Collins CB, Donnelly J. 84.  et al. 2016. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 20:535–47 [Google Scholar]
  85. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC. 85.  et al. 2013. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:746996–99 [Google Scholar]
  86. Nimmich W, Schmidt G, Krallmann-Wenzel U. 86.  1991. Two different Escherichia coli capsular polysaccharide depolymerases each associated with one of the coliphage φK5 and φK20. FEMS Microbiol. Lett. 82:2137–41 [Google Scholar]
  87. Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S. 87.  et al. 2010. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 3:5487–95 [Google Scholar]
  88. Ogilvie LA, Jones BV. 88.  2015. The human gut virome: a multifaceted majority. Front. Microbiol. 6:918 [Google Scholar]
  89. Onderdonk AB, Kasper DL, Cisneros RL, Bartlett JG. 89.  1977. The capsular polysaccharide of Bacteroides fragilis as a virulence factor: Comparison of the pathogenic potential of encapsulated and unencapsulated strains. J. Infect. Dis. 136:182–89 [Google Scholar]
  90. Patrick S, Blakely GW, Houston S, Moore J, Abratt VR. 90.  et al. 2010. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology 156:113255–69 [Google Scholar]
  91. Pauly M, Gille S, Liu LF, Mansoori N, de Souza A. 91.  et al. 2013. Hemicellulose biosynthesis. Planta 238:4627–42 [Google Scholar]
  92. Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D. 92.  et al. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:7524638–41 [Google Scholar]
  93. Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS. 93.  et al. 2010. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105:112420–28 [Google Scholar]
  94. Pudlo NA, Urs K, Kumar SS, German JB, Mills DA, Martens EC. 94.  2015. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. mBio 6:6e01282–15 [Google Scholar]
  95. Radke KL, Siegel EC. 95.  1971. Mutation preventing capsular polysaccharide synthesis in Escherichia coli K-12 and its effect on bacteriophage resistance. J. Bacteriol. 106:2432–37 [Google Scholar]
  96. Raftis EJ, Salvetti E, Torriani S, Felis GE, O'Toole PW. 96.  2011. Genomic diversity of Lactobacillus salivarius. Appl. Environ. Microbiol. 77:3954–65 [Google Scholar]
  97. Raghavan V, Lowe EC, Townsend GE, Bolam DN, Groisman EA. 97.  2014. Tuning transcription of nutrient utilization genes to catabolic rate promotes growth in a gut bacterium. Mol. Microbiol. 93:1010–25 [Google Scholar]
  98. Rakoff-Nahoum S, Coyne MJ, Comstock LE. 98.  2014. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24:140–49 [Google Scholar]
  99. Rakoff-Nahoum S, Foster KR, Comstock LE. 99.  2016. The evolution of cooperation within the gut microbiota. Nature 533:7602255–59 [Google Scholar]
  100. Reddy SK, Bågenholm V, Pudlo NA, Bouraoui H, Koropatkin NM. 100.  et al. 2016. A β-mannan utilization locus in Bacteroides ovatus involves a GH36 α-galactosidase active on galactomannans. FEBS Lett 590:142106–18 [Google Scholar]
  101. Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI. 101.  2013. Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut. PNAS 110:5020236–41 [Google Scholar]
  102. Roberts IS. 102.  1996. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50:285–315 [Google Scholar]
  103. Rogers TE, Pudlo NA, Koropatkin NM, Bell JSK, Moya Balasch M. 103.  et al. 2013. Dynamic responses of Bacteroides thetaiotaomicron during growth on glycan mixtures. Mol. Microbiol. 88:876–90 [Google Scholar]
  104. Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N. 104.  et al. 2015. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6:7481 Corrigendum. 2016 Nat. Commun. 7:10705 [Google Scholar]
  105. Round JL, Lee SM, Li J, Tran G, Jabri B. 105.  et al. 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:6032974–77 [Google Scholar]
  106. Ruas-Madiedo P, Gueimonde M, Arigoni F, De Los Reyes-Gavilán CG, Margolles A. 106.  2009. Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Appl. Environ. Microbiol. 75:41204–7 [Google Scholar]
  107. Ruijssenaars HJ, Stingele F, Hartmans S. 107.  2000. Biodegradability of food-associated extracellular polysaccharides. Curr. Microbiol. 40:3194–99 [Google Scholar]
  108. Salazar N, Gueimonde M, Hernández-Barranco AM, Ruas-Madiedo P, De Los Reyes-Gavilán CG. 108.  2008. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl. Environ. Microbiol. 74:154737–45 [Google Scholar]
  109. Salazar N, Ruas-Madiedo P, Kolida S, Collins M, Rastall R. 109.  et al. 2009. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. Int. J. Food Microbiol. 135:3260–67 [Google Scholar]
  110. Saxelin ML, Nurmiaho EL, Korhola MP, Sundman V. 110.  1979. Partial characterization of a new C3-type capsule-dissolving phage of Streptococcus cremoris. Can. J. Microbiol. 25:101182–87 [Google Scholar]
  111. Schiavi E, Gleinser M, Molloy E, Groeger D, Frei R. 111.  et al. 2016. The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses. Appl. Environ. Microbiol. 82:247185–96 [Google Scholar]
  112. Scholl D, Adhya S, Merril C. 112.  2005. Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl. Environ. Microbiol. 71:84872–74 [Google Scholar]
  113. Scholl D, Rogers S, Adhya S, Merril CR. 113.  2001. Bacteriophage K1–5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J. Virol. 75:62509–15 [Google Scholar]
  114. Schwalm ND, Townsend GE, Groisman EA. 114.  2016. Multiple signals govern utilization of a polysaccharide in the gut bacterium Bacteroides thetaiotaomicron. mBio 7:e01342–16 [Google Scholar]
  115. Schwalm ND, Townsend GE, Groisman EA. 115.  2017. Prioritization of polysaccharide utilization and control of regulator activation in Bacteroides thetaiotaomicron. Mol. Microbiol. 104:32–45 [Google Scholar]
  116. Schwarzer D, Buettner FFR, Browning C, Nazarov S, Rabsch W. 116.  et al. 2012. A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis. J. Virol. 86:1910384–98 [Google Scholar]
  117. Sims IM, Frese SA, Walter J, Loach D, Wilson M. 117.  et al. 2011. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100–23. ISME J 5:71115–24 [Google Scholar]
  118. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. 118.  2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:7585212–15 [Google Scholar]
  119. Sonnenburg ED, Sonnenburg JL. 119.  2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20:5779–86 [Google Scholar]
  120. Sonnenburg ED, Sonnenburg JL, Manchester JK, Hansen EE, Chiang HC, Gordon JI. 120.  2006. A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism. PNAS 103:238834–39 [Google Scholar]
  121. Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP. 121.  et al. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:57171955–59 [Google Scholar]
  122. Stanley P, Schacter H, Taniguchi N. 122.  2009. N-glycans. Essentials of Glycobiology A Varki, RD Cummings, J Esko 101–14 New York: Cold Spring Harb. Press. , 2nd ed.. [Google Scholar]
  123. Stummeyer K, Schwarzer D, Claus H, Vogel U, Gerardy-Schahn R, Mühlenhoff M. 123.  2006. Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Mol. Microbiol. 60:51123–35 [Google Scholar]
  124. Tailford LE, Crost EH, Kavanaugh D, Juge N. 124.  2015. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6:81 [Google Scholar]
  125. Thomas F, Barbeyron T, Tonon T, Genicot S, Czjzek M, Michel G. 125.  2012. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Env. Microbiol. 14:92379–94 [Google Scholar]
  126. Tzianabos AO, Kasper DL, Cisneros RL, Smith RS, Onderdonk AB. 126.  1995. Polysaccharide-mediated protection against abscess formation in experimental intra-abdominal sepsis. J. Clin. Investig. 96:62727–31 [Google Scholar]
  127. Tzianabos AO, Onderdonk AB, Rosner B, Cisneros RL, Kasper DL. 127.  1993. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262:5132416–19 [Google Scholar]
  128. van Bueren AL, Saraf A, Martens EC, Dijkhuizen L. 128.  2015. Differential metabolism of exopolysaccharides from probiotic lactobacilli by the human gut symbiont Bacteroides thetaiotaomicron. Appl. Environ. Microbiol. 81:123973–83 [Google Scholar]
  129. Van der Sluis M, De Koning BAE, De Bruijn ACJM, Velcich A, Meijerink JPP. 129.  et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:1117–29 [Google Scholar]
  130. van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IGH. 130.  2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Biol. Rev. 70:1157–76 [Google Scholar]
  131. Walter J, Schwab C, Loach DM, Gänzle MG, Tannock GW. 131.  2008. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology 154:172–80 [Google Scholar]
  132. Wang Y, Gänzle MG, Schwab C. 132.  2010. Exopolysaccharide synthesized by Lactobacillus reuteri decreases the ability of enterotoxigenic Escherichia coli to bind to porcine erythrocytes. Appl. Environ. Microbiol. 76:144863–66 [Google Scholar]
  133. Whitfield C. 133.  2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75:39–68 [Google Scholar]
  134. Whitfield C, Lam M. 134.  1986. Characterisation of coliphage K30, a bacteriophage specific for Escherichia coli capsular serotype K30. FEMS Microbiol. Lett. 37:3351–55 [Google Scholar]
  135. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK. 135.  et al. 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:56152074–76 [Google Scholar]
  136. Yother J. 136.  2011. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu. Rev. Microbiol. 65:563–81 [Google Scholar]
  137. Ze X, Ben David Y, Laverde-Gomez JA, Dassa B, Sheridan PO. 137.  et al. 2015. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. mBio 6:5e01058–15 [Google Scholar]
  138. Ze X, Duncan SH, Louis P, Flint HJ. 138.  2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:81535–43 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error