Rod-shaped cells are polarized with proteins asymmetrically localizing to specific positions. This spatial organization is important for regulation of motility and cell division and changes over time. Dedicated protein modules regulate motility independent of the cell cycle, and cell division dependent on the cell cycle. For motility, a leading-lagging cell polarity is established that is inverted during cellular reversals. Establishment and inversion of this polarity are regulated hierarchically by interfacing protein modules that sort polarized motility proteins to the correct cell poles or cause their relocation between cell poles during reversals akin to a spatial toggle switch. For division, a novel self-organizing protein module that incorporates a ParA ATPase positions the FtsZ-ring at midcell. This review covers recent findings concerning the spatiotemporal regulation of motility and cell division in and illustrates how the study of diverse bacteria may uncover novel mechanisms involved in regulating bacterial cell polarity.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams DW, Wu LJ, Errington J. 1.  2014. Cell cycle regulation by the bacterial nucleoid. Curr. Opin. Microbiol. 22:94–101 [Google Scholar]
  2. Astling DP, Lee JY, Zusman DR. 2.  2006. Differential effects of chemoreceptor methylation-domain mutations on swarming and development in the social bacterium Myxococcus xanthus. Mol. Microbiol. 59:45–55 [Google Scholar]
  3. Balagam R, Litwin DB, Czerwinski F, Sun M, Kaplan HB. 3.  et al. 2014. Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility. PLOS Comp. Biol. 10:e1003619 [Google Scholar]
  4. Berg HC. 4.  2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72:19–54 [Google Scholar]
  5. Berleman JE, Allen S, Danielewicz MA, Remis JP, Gorur A. 5.  et al. 2014. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front. Microbiol. 5:474 [Google Scholar]
  6. Berleman JE, Kirby JR. 6.  2009. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol. Rev. 33:942–57 [Google Scholar]
  7. Berleman JE, Vicente JJ, Davis AE, Jiang SY, Seo Y-E, Zusman DR. 7.  2011. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLOS ONE 6:e23920 [Google Scholar]
  8. Bischof LF, Friedrich C, Harms A, Søgaard-Andersen L, van der Does C. 8.  2016. The type IV pilus assembly ATPase PilB of Myxococcus xanthus interacts with the inner membrane platform protein PilC and the nucleotide-binding protein PilM. J. Biol. Chem. 291:6946–57 [Google Scholar]
  9. Blackhart BD, Zusman DR. 9.  1985. “Frizzy” genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. PNAS 82:8771–74 [Google Scholar]
  10. Brinkhoff T, Fischer D, Vollmers J, Voget S, Beardsley C. 10.  et al. 2012. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. ISME J 6:1260–72 [Google Scholar]
  11. Bulyha I, Lindow S, Lin L, Bolte K, Wuichet K. 11.  et al. 2013. Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity. Dev. Cell 25:119–31 [Google Scholar]
  12. Bulyha I, Schmidt C, Lenz P, Jakovljevic V, Höne A. 12.  et al. 2009. Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol. Microbiol. 74:691–706 [Google Scholar]
  13. Burrows LL. 13.  2012. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66:493–520 [Google Scholar]
  14. Bustamante VH, Martinez-Flores I, Vlamakis HC, Zusman DR. 14.  2004. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol. Microbiol. 53:1501–13 [Google Scholar]
  15. Chang Y-W, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L, Jensen GJ. 15.  2016. Architecture of the type IVa pilus machine. Science 351:aad2001 [Google Scholar]
  16. Clausen M, Jakovljevic V, Søgaard-Andersen L, Maier B. 16.  2009. High force generation is a conserved property of type IV pilus systems. J. Bacteriol. 191:4633–38 [Google Scholar]
  17. Drubin DG, Nelson WJ. 17.  1996. Origins of cell polarity. Cell 84:335–44 [Google Scholar]
  18. Eswara PJ, Ramamurthi KS. 18.  2017. Bacterial cell division: nonmodels poised to take the spotlight. Annu. Rev. Microbiol. 71:393–411 [Google Scholar]
  19. Faure LM, Fiche J-B, Espinosa L, Ducret A, Anantharaman V. 19.  et al. 2016. The mechanism of force transmission at bacterial focal adhesion complexes. Nature 539:530–35 [Google Scholar]
  20. Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C. 20.  et al. 2014. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:259–62 [Google Scholar]
  21. Friedrich C, Bulyha I, Søgaard-Andersen L. 21.  2014. Outside-in assembly pathway of the type IV pili system in Myxococcus xanthus. J. Bacteriol. 196:378–90 [Google Scholar]
  22. Garcia-Moreno D, Polanco MC, Navarro-Aviles G, Murillo FJ, Padmanabhan S, Elias-Arnanz M. 22.  2009. A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus. J. Bacteriol. 191:3108–19 [Google Scholar]
  23. Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L. 23.  2005. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120:329–41 [Google Scholar]
  24. Guzzo M, Agrebi R, Espinosa L, Baronian G, Molle V. 24.  et al. 2015. Evolution and design governing signal precision and amplification in a bacterial chemosensory pathway. PLOS Genet 11:e1005460 [Google Scholar]
  25. Harms A, Treuner-Lange A, Schumacher D, Søgaard-Andersen L. 25.  2013. Tracking of chromosome and replisome dynamics in Myxococcus xanthus reveals a novel chromosome arrangement. PLOS Genet 9:e1003802 [Google Scholar]
  26. Harris BZ, Kaiser D, Singer M. 26.  1998. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev 12:1022–35 [Google Scholar]
  27. Harvey CW, Madukoma CS, Mahserejian S, Alber MS, Shrout JD. 27.  2014. Cell division resets polarity and motility for the bacterium Myxococcus xanthus. J. Bacteriol. 196:3853–61 [Google Scholar]
  28. Hodgkin J, Kaiser D. 28.  1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement. Mol. Gen. Genet. 171:177–91 [Google Scholar]
  29. Holeckova N, Doubravova L, Massidda O, Molle V, Buriankova K. 29.  et al. 2015. LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. mBio 6:e01700–14 [Google Scholar]
  30. Inclán YF, Laurent S, Zusman DR. 30.  2008. The receiver domain of FrzE, a CheA-CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A- and S-motility systems of Myxococcus xanthus. Mol. Microbiol. 68:1328–39 [Google Scholar]
  31. Inclán YF, Vlamakis HC, Zusman DR. 31.  2007. FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol. Microbiol. 65:90–102 [Google Scholar]
  32. Iniesta AA. 32.  2014. ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus. PLOS ONE 9:e86897 [Google Scholar]
  33. Jakobczak B, Keilberg D, Wuichet K, Søgaard-Andersen L. 33.  2015. Contact- and protein transfer-dependent stimulation of assembly of the gliding motility machinery in Myxococcus xanthus. PLOS Genet. 11:e1005341 [Google Scholar]
  34. Jakovljevic V, Leonardy S, Hoppert M, Søgaard-Andersen L. 34.  2008. PilB and PilT are ATPases acting antagonistically in type IV pili function in Myxococcus xanthus. J. Bacteriol. 190:2411–21 [Google Scholar]
  35. Jelsbak L, Søgaard-Andersen L. 35.  2002. Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. PNAS 99:2032–37 [Google Scholar]
  36. Kahnt J, Aguiluz K, Koch J, Treuner-Lange A, Konovalova A. 36.  et al. 2010. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J. Proteome Res. 9:5197–208 [Google Scholar]
  37. Kaimer C, Berleman JE, Zusman DR. 37.  2012. Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus. Curr. Opin. Microbiol. 15:751–57 [Google Scholar]
  38. Kaimer C, Zusman DR. 38.  2013. Phosphorylation-dependent localization of the response regulator FrzZ signals cell reversals in Myxococcus xanthus. Mol. Microbiol. 88:740–53 [Google Scholar]
  39. Kaimer C, Zusman DR. 39.  2016. Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ. Mol. Microbiol. 100:379–95 [Google Scholar]
  40. Kaiser D. 40.  1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. PNAS 76:5952–56 [Google Scholar]
  41. Keilberg D, Søgaard-Andersen L. 41.  2014. Regulation of bacterial bell polarity by small GTPases. Biochemistry 53:1899–907 [Google Scholar]
  42. Keilberg D, Wuichet K, Drescher F, Søgaard-Andersen L. 42.  2012. A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus. PLOS Genet 8:e1002951 [Google Scholar]
  43. Kiekebusch D, Thanbichler M. 43.  2013. Spatiotemporal organization of microbial cells by protein concentration gradients. Trends Microbiol 22:65–73 [Google Scholar]
  44. Konovalova A, Petters T, Søgaard-Andersen L. 44.  2010. Extracellular biology of Myxococcus xanthus. FEMS Microbiol. Rev. 34:89–106 [Google Scholar]
  45. Korotkov KV, Sandkvist M, Hol WGJ. 45.  2012. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10:336–51 [Google Scholar]
  46. Kroos L. 46.  2017. Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet 33:3–15 [Google Scholar]
  47. Kühn J, Briegel A, Morschel E, Kahnt J, Leser K. 47.  et al. 2010. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J. 29:327–39 [Google Scholar]
  48. Laloux G, Jacobs-Wagner C. 48.  2014. How do bacteria localize proteins to the cell pole?. J. Cell Sci. 127:11–19 [Google Scholar]
  49. Leonardy S, Freymark G, Hebener S, Ellehauge E, Søgaard-Andersen L. 49.  2007. Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J. 26:4433–44 [Google Scholar]
  50. Leonardy S, Miertzschke M, Bulyha I, Sperling E, Wittinghofer A, Søgaard-Andersen L. 50.  2010. Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J 29:2276–89 [Google Scholar]
  51. Li Y, Bustamante VH, Lux R, Zusman D, Shi W. 51.  2005. Divergent regulatory pathways control A and S motility in Myxococcus xanthus through FrzE, a CheA-CheY fusion protein. J. Bacteriol. 187:1716–23 [Google Scholar]
  52. Luciano J, Agrebi R, Le Gall AV, Wartel M, Fiegna F. 52.  et al. 2011. Emergence and modular evolution of a novel motility machinery in bacteria. PLOS Genet 7:e1002268 [Google Scholar]
  53. Lutkenhaus J. 53.  2012. The ParA/MinD family puts things in their place. Trends Microbiol 20:411–18 [Google Scholar]
  54. Lutkenhaus J, Pichoff S, Du S. 54.  2012. Bacterial cytokinesis: from Z ring to divisome. Cytoskeleton 69:778–90 [Google Scholar]
  55. Maier B, Potter L, So M, Long CD, Seifert HS, Sheetz MP. 55.  2002. Single pilus motor forces exceed 100 pN. PNAS 99:16012–17 [Google Scholar]
  56. Mauriello EM, Astling DP, Sliusarenko O, Zusman DR. 56.  2009. Localization of a bacterial cytoplasmic receptor is dynamic and changes with cell-cell contacts. PNAS 106:4852–57 [Google Scholar]
  57. Mauriello EMF, Mouhamar F, Nan B, Ducret A, Dai D. 57.  et al. 2010. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J 29:315–26 [Google Scholar]
  58. McBride MJ. 58.  2001. Bacterial gliding motility: Multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55:49–75 [Google Scholar]
  59. McBride MJ, Köhler T, Zusman DR. 59.  1992. Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behaviour. J. Bacteriol. 174:4246–57 [Google Scholar]
  60. McLoon AL, Wuichet K, Häsler M, Keilberg D, Szadkowski D, Søgaard-Andersen L. 60.  2016. MglC, a paralog of Myxococcus xanthus GTPase-activating protein MglB, plays a divergent role in motility regulation. J. Bacteriol. 198:510–20 [Google Scholar]
  61. Mercier R, Mignot T. 61.  2016. Regulations governing the multicellular lifestyle of Myxococcus xanthus. Curr. Opin. Microbiol. 34:104–10 [Google Scholar]
  62. Merz AJ, So M, Sheetz MP. 62.  2000. Pilus retraction powers bacterial twitching motility. Nature 407:98–102 [Google Scholar]
  63. Miertzschke M, Koerner C, Vetter IR, Keilberg D, Hot E. 63.  et al. 2011. Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity. EMBO J 30:4185–97 [Google Scholar]
  64. Mignot T, Merlie JP, Zusman DR. 64.  2005. Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310:855–57 [Google Scholar]
  65. Mignot T, Shaevitz JW, Hartzell PL, Zusman DR. 65.  2007. Evidence that focal adhesion complexes power bacterial gliding motility. Science 315:853–56 [Google Scholar]
  66. Moine A, Agrebi R, Espinosa L, Kirby JR, Zusman DR. 66.  et al. 2014. Functional organization of a multimodular bacterial chemosensory apparatus. PLOS Genet 10:e1004164 [Google Scholar]
  67. Nan B, Bandaria JN, Guo KY, Fan X, Moghtaderi A. 67.  et al. 2015. The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA. PNAS 112:E186–93 [Google Scholar]
  68. Nan B, Bandaria JN, Moghtaderi A, Sun I-H, Yildiz A, Zusman DR. 68.  2013. Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. PNAS 110:E1508–13 [Google Scholar]
  69. Nan B, Chen J, Neu JC, Berry RM, Oster G, Zusman DR. 69.  2011. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. PNAS 108:2498–503 [Google Scholar]
  70. Nan B, Mauriello EMF, Sun I-H, Wong A, Zusman DR. 70.  2010. A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol. Microbiol. 76:1539–54 [Google Scholar]
  71. Nelson WJ. 71.  2003. Adaptation of core mechanisms to generate cell polarity. Nature 422:766–74 [Google Scholar]
  72. Nudleman E, Wall D, Kaiser D. 72.  2006. Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol. Microbiol. 60:16–29 [Google Scholar]
  73. Patryn J, Allen K, Dziewanowska K, Otto R, Hartzell PL. 73.  2010. Localization of MglA, an essential gliding motility protein in Myxococcus xanthus. Cytoskeleton 67:322–37 [Google Scholar]
  74. Pelicic V. 74.  2008. Type IV pili: pluribus unum?. Mol. Microbiol. 68:827–37 [Google Scholar]
  75. Reichenbach H. 75.  1999. The ecology of the myxobacteria. Env. Microbiol. 1:15–21 [Google Scholar]
  76. Rosario CJ, Singer M. 76.  2007. The Myxococcus xanthus developmental program can be delayed by inhibition of DNA replication. J. Bacteriol. 189:8793–800 [Google Scholar]
  77. Rudner DZ, Losick R. 77.  2010. Protein subcellular localization in bacteria. Cold Spring Harb. Perspect. Biol. 2:a000307 [Google Scholar]
  78. Sakai D, Horiuchi T, Komano T. 78.  2001. ATPase activity and multimer formation of PilQ protein are required for thin pilus biogenesis in plasmid R64. J. Biol. Chem. 276:17968–75 [Google Scholar]
  79. Schumacher D, Bergeler S, Harms A, Vonck J, Huneke-Vogt S. 79.  et al. 2017. The PomXYZ proteins self-organize on the bacterial nucleoid to stimulate cell division. Dev. Cell 41:3299–314 [Google Scholar]
  80. Scott AE, Simon E, Park SK, Andrews P, Zusman DR. 80.  2008. Site-specific receptor methylation of FrzCD in Myxococcus xanthus is controlled by a tetra-trico peptide repeat (TPR) containing regulatory domain of the FrzF methyltransferase. Mol. Microbiol. 69:724–35 [Google Scholar]
  81. Shapiro L, McAdams HH, Losick R. 81.  2002. Generating and exploiting polarity in bacteria. Science 298:1942–46 [Google Scholar]
  82. Shapiro L, McAdams HH, Losick R. 82.  2009. Why and how bacteria localize proteins. Science 326:1225–28 [Google Scholar]
  83. Shimkets LJ. 83.  1986. Role of cell cohesion in Myxococcus xanthus fruiting body formation. J. Bacteriol. 166:842–48 [Google Scholar]
  84. Siewering K, Jain S, Friedrich C, Webber-Birungi MT, Semchonok DA. 84.  et al. 2014. Peptidoglycan-binding protein TsaP functions in surface assembly of type IV pili. PNAS 111:E953–61 [Google Scholar]
  85. Singer M, Kaiser D. 85.  1995. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev. 9:1633–44 [Google Scholar]
  86. Skerker JM, Berg HC. 86.  2001. Direct observation of extension and retraction of type IV pili. PNAS 98:6901–4 [Google Scholar]
  87. Skotnicka D, Smaldone GT, Petters T, Trampari E, Liang J. 87.  et al. 2016. A minimal threshold of c-di-GMP is essential for fruiting body formation and sporulation in Myxococcus xanthus. PLOS Genet. 12:e1006080 [Google Scholar]
  88. Søgaard-Andersen L, Kaiser D. 88.  1996. C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. PNAS 93:2675–79 [Google Scholar]
  89. Sun H, Zusman DR, Shi W. 89.  2000. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol 10:1143–46 [Google Scholar]
  90. Sun M, Wartel M, Cascales E, Shaevitz JW, Mignot T. 90.  2011. Motor-driven intracellular transport powers bacterial gliding motility. PNAS 108:7559–64 [Google Scholar]
  91. Takhar HK, Kemp K, Kim M, Howell PL, Burrows LL. 91.  2013. The platform protein is essential for type IV pilus biogenesis. J. Biol. Chem. 288:9721–28 [Google Scholar]
  92. Treuner-Lange A, Aguiluz K, van der Does C, Gómez-Santos N, Harms A. 92.  et al. 2013. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. Mol. Microbiol. 87:235–53 [Google Scholar]
  93. Treuner-Lange A, Macia E, Guzzo M, Hot E, Faure L. 93.  et al. 2015. The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions. J. Cell Biol. 210:243–56 [Google Scholar]
  94. Treuner-Lange A, Søgaard-Andersen L. 94.  2014. Regulation of cell polarity in bacteria. J. Cell Biol. 206:7–17 [Google Scholar]
  95. Typas A, Banzhaf M, Gross CA, Vollmer W. 95.  2012. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10:123–36 [Google Scholar]
  96. Tzeng L, Ellis TN, Singer M. 96.  2006. DNA replication during aggregation phase is essential for Myxococcus xanthus development. J. Bacteriol. 188:2774–79 [Google Scholar]
  97. Tzeng LF, Singer M. 97.  2005. DNA replication during sporulation in Myxococcus xanthus fruiting bodies. PNAS 102:14428–33 [Google Scholar]
  98. Vecchiarelli AG, Mizuuchi K, Funnell BE. 98.  2012. Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol. Microbiol. 86:513–23 [Google Scholar]
  99. Velicer GJ, Hillesland KL. 99.  2008. Why cooperate? The ecology and evolution of myxobacteria. Myxobacteria: Multicellularity and Differentiation DE Whitworth 17–40 Washington, DC: ASM [Google Scholar]
  100. Wartel M, Ducret A, Thutupalli S, Czerwinski F, Le Gall A-V. 100.  et al. 2013. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus. PLOS Biol. 11:e1001728 [Google Scholar]
  101. Willemse J, Borst JW, de Waal E, Bisseling T, van Wezel GP. 101.  2011. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev. 25:89–99 [Google Scholar]
  102. Wittinghofer A, Vetter IR. 102.  2011. Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80:943–71 [Google Scholar]
  103. Wolfgang M, van Putten JPM, Hayes SF, Dorward D, Koomey M. 103.  2000. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J 19:6408–18 [Google Scholar]
  104. Wu SS, Kaiser D. 104.  1995. Genetic and functional evidence that type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18:547–58 [Google Scholar]
  105. Wuichet K, Søgaard-Andersen L. 105.  2015. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes. Genome Biol. Evol. 7:57–70 [Google Scholar]
  106. Zhang Y, Ducret A, Shaevitz J, Mignot T. 106.  2012. From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol. Rev. 36:149–64 [Google Scholar]
  107. Zhang Y, Franco M, Ducret A, Mignot T. 107.  2010. A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLOS Biol 8:e1000430 [Google Scholar]
  108. Zhang Y, Guzzo M, Ducret A, Li Y-Z, Mignot T. 108.  2012. A dynamic response regulator protein modulates G-protein–dependent polarity in the bacterium Myxococcus xanthus. PLOS Genet. 8:e1002872 [Google Scholar]
  109. Zhou T, Nan B. 109.  2017. Exopolysaccharides promote Myxococcus xanthus social motility by inhibiting cellular reversals. Mol. Microbiol. 103:729–43 [Google Scholar]
  110. Zusman D, Rosenberg E. 110.  1970. DNA cycle of Myxococcus xanthus. J. Mol. Biol. 49:609–19 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error