Colorectal cancer is the second-leading cause of cancer-related deaths in the United States and fourth-leading cause of cancer-related deaths worldwide. While cancer is largely considered to be a disease of genetic and environmental factors, increasing evidence has demonstrated a role for the microbiota (the microorganisms associated with the human body) in shaping inflammatory environments and promoting tumor growth and spread. Herein, we discuss both human data from meta'omics analyses and data from mechanistic studies in cell culture and animal models that support specific bacterial agents as potentiators of tumorigenesis—including , enterotoxigenic , and colibactin-producing . Further, we consider how microbes can be used in diagnosing colorectal cancer and manipulating the tumor environment to encourage better patient outcomes in response to immunotherapy treatments.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J. 1.  et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:7480451–55 [Google Scholar]
  2. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM. 2.  et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:6103120–23Distinguished the roles of colibactin-producing E. coli in inflammation and tumorigenesis using animal models. [Google Scholar]
  3. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y. 3.  et al. 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:2367–80 [Google Scholar]
  4. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T. 4.  et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:6015337–41 [Google Scholar]
  5. Ballal SA, Veiga P, Fenn K, Michaud M, Kim JH. 5.  et al. 2015. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc. Natl. Acad. Sci. USA 112:257803–8 [Google Scholar]
  6. Beaugerie L, Itzkowitz SH. 6.  2015. Cancers complicating inflammatory bowel disease. N. Engl. J. Med. 372:151441–52 [Google Scholar]
  7. Beissert S, Bergholz M, Waase I, Lepsien G, Schauer A. 7.  et al. 1989. Regulation of tumor necrosis factor gene expression in colorectal adenocarcinoma: in vivo analysis by in situ hybridization. Proc. Natl. Acad. Sci. USA 86:135064–68 [Google Scholar]
  8. Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H. 8.  et al. 2014. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158:2288–99 [Google Scholar]
  9. Belkaid Y, Hand TW. 9.  2014. Role of the microbiota in immunity and inflammation. Cell 157:1121–41 [Google Scholar]
  10. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM. 10.  et al. 2015. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60:2208–15 [Google Scholar]
  11. Boleij A, van Gelder MMHJ, Swinkels DW, Tjalsma H. 11.  2011. Clinical importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin. Infect. Dis. 53:9870–78 [Google Scholar]
  12. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J. 12.  et al. 2010. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28:193167–75 [Google Scholar]
  13. Burd EM. 13.  2003. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 16:11–17 [Google Scholar]
  14. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J. 14.  et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:81621–24 [Google Scholar]
  15. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M. 15.  et al. 2012. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22:2299–306With Kostic et al. (49), first to identify an association between F. nucleatum rRNA levels and human CRC tissues. [Google Scholar]
  16. Chun E, Lavoie S, Michaud M, Gallini CA, Kim J. 16.  et al. 2015. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12:2244–57 [Google Scholar]
  17. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H. 17.  et al. 2011. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 108:Suppl 14586–91 [Google Scholar]
  18. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM. 18.  et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:7410178–84 [Google Scholar]
  19. Coppenhagen-Glazer S, Sol A, Abed J, Naor R, Zhang X. 19.  et al. 2015. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect. Immun. 83:31104–13 [Google Scholar]
  20. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P. 20.  2010. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl. Acad. Sci. USA 107:2511537–42 [Google Scholar]
  21. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. 21.  et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484559–63 [Google Scholar]
  22. De Simone V, Pallone F, Monteleone G, Stolfi C. 22.  2013. Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology 2:12e26617 [Google Scholar]
  23. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL. 23.  et al. 2014. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA 111:5118321–26 [Google Scholar]
  24. Donohoe DR, Holley D, Collins LB, Montgomery SA, Whitmore AC. 24.  et al. 2014. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov 4:121387–97 [Google Scholar]
  25. Dove WF, Clipson L, Gould KA, Luongo C, Marshall DJ. 25.  et al. 1997. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57:5812–14 [Google Scholar]
  26. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, Dubois RN. 26.  1994. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:41183–88 [Google Scholar]
  27. Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN. 27.  et al. 2014. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res. 74:41166–78 [Google Scholar]
  28. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. 28.  2013. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer. 13:11759–71 [Google Scholar]
  29. Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT. 29.  et al. 2013. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLOS ONE 8:10e76096 [Google Scholar]
  30. Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T. 30.  et al. 2014. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. 33:81381–90 [Google Scholar]
  31. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J. 31.  et al. 2014. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl. Acad. Sci. USA 111:22E2329–38 [Google Scholar]
  32. Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Júnior U, Nakano V, Avila-Campos MJ. 32.  2015. High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz. J. Microbiol. 46:41135–40 [Google Scholar]
  33. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B. 33.  et al. 2006. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:57951960–64 [Google Scholar]
  34. Garrett WS. 34.  2015. Cancer and the microbiota. Science 348:623080–86 [Google Scholar]
  35. Geis AL, Fan H, Wu X, Wu S, Huso DL. 35.  et al. 2015. Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov 5:101098–1109 [Google Scholar]
  36. Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J. 36.  et al. 2012. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13:3R23 [Google Scholar]
  37. Goldszmid RS, Dzutsev A, Viaud S, Zitvogel L, Restifo NP, Trinchieri G. 37.  2015. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol Res 3:2103–9 [Google Scholar]
  38. Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X. 38.  et al. 2011. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl. Acad. Sci. USA 108:3715354–59 [Google Scholar]
  39. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J. 39.  et al. 2015. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:2344–55 [Google Scholar]
  40. Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y. 40.  et al. 2005. Identification and characterization of a novel adhesin unique to oral fusobacteria. J. Bacteriol. 187:155330–40 [Google Scholar]
  41. Hoeijmakers JHJ. 41.  2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361:151475–85 [Google Scholar]
  42. Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K. 42.  et al. 2015. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int. J. Cancer 137:61258–68 [Google Scholar]
  43. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T. 43.  et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:3485–98 [Google Scholar]
  44. Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF. 44.  et al. 2015. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21:6891–97First metabolomics study of primary human CRC-associated tissues with microbes and tumorigenesis. [Google Scholar]
  45. Kaplan CW, Lux R, Haake SK, Shi W. 45.  2009. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol. 71:135–47 [Google Scholar]
  46. Karin M, Greten FR. 46.  2005. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5:10749–59 [Google Scholar]
  47. Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. 47.  2004. Diet, nutrition and the prevention of cancer. Public Health Nutr 7:1A187–200 [Google Scholar]
  48. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA. 48.  et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:2207–15Showed F. nucleatum was sufficient for tumor formation and myeloid cell infiltration without macroscopic inflammation. [Google Scholar]
  49. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F. 49.  et al. 2012. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22:2292–98With Castellarin et al. (15), first to identify an association between F. nucleatum rDNA levels and human CRC tissues. [Google Scholar]
  50. Kostic AD, Ojesina AI, Pedamallu CS, Jung J, Verhaak RGW. 50.  et al. 2011. PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nat. Biotechnol. 29:5393–96 [Google Scholar]
  51. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H. 51.  et al. 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372:262509–20 [Google Scholar]
  52. Li Y, Kundu P, Seow SW, de Matos CT, Aronsson L. 52.  et al. 2012. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 33:61231–38 [Google Scholar]
  53. Louis P, Hold GL, Flint HJ. 53.  2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12:10661–72 [Google Scholar]
  54. Masuda H, Iwai S, Tanaka T, Hayakawa S. 54.  1995. Expression of IL-8, TNF-alpha and IFN-gamma m-RNA in ulcerative colitis, particularly in patients with inactive phase. J. Clin. Lab. Immunol. 46:3111–23 [Google Scholar]
  55. McCoy AN, Araújo-Pérez F, Azcárate-Peril A, Yeh JJ, Sandler RS, Keku TO. 55.  2013. Fusobacterium is associated with colorectal adenomas. PLoS ONE 8:1e53653 [Google Scholar]
  56. McIntyre RE, Buczacki SJA, Arends MJ, Adams DJ. 56.  2015. Mouse models of colorectal cancer as preclinical models. Bioessays 37:8909–20 [Google Scholar]
  57. Melnikov A, Galinsky K, Rogov P, Fennell T, Van Tyne D. 57.  et al. 2011. Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol 12:8R73 [Google Scholar]
  58. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y. 58.  et al. 2015. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. In press. doi: 10.1136/gutjnl-2015-310101
  59. Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M. 59.  et al. 2015. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 1:5653–61 [Google Scholar]
  60. Moore RA, Warren RL, Freeman JD, Gustavsen JA, Chénard C. 60.  et al. 2011. The sensitivity of massively parallel sequencing for detecting candidate infectious agents associated with human tissue. PLoS ONE 6:5e19838 [Google Scholar]
  61. Naik S, Bouladoux N, Linehan JL, Han S-J, Harrison OJ. 61.  et al. 2015. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:7545104–8 [Google Scholar]
  62. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R. 62.  et al. 2012. Compartmentalized control of skin immunity by resident commensals. Science 337:60981115–19 [Google Scholar]
  63. Nakatsu G, Li X, Zhou H, Sheng J, Wong SH. 63.  et al. 2015. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6:8727 [Google Scholar]
  64. Ng K, Meyerhardt JA, Chan AT, Sato K, Chan JA. 64.  et al. 2015. Aspirin and COX-2 inhibitor use in patients with stage III colon cancer. J. Natl. Cancer Inst. 107:1345–45 [Google Scholar]
  65. Nomura T, Sakaguchi S. 65.  2005. Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr. Top. Microbiol. Immunol. 293:287–302 [Google Scholar]
  66. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E. 66.  et al. 2006. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:5788848–51 [Google Scholar]
  67. O'Keefe SJD, Li JV, Lahti L, Ou J, Carbonero F. 67.  et al. 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6:6342 [Google Scholar]
  68. O'Keefe SJD, Ou J, Aufreiter S, O'Connor D, Sharma S. 68.  et al. 2009. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J. Nutr. 139:112044–48 [Google Scholar]
  69. Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M. 69.  et al. 2013. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98:1111–20 [Google Scholar]
  70. Polk DB, Peek RM. 70.  2010. Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10:6403–14 [Google Scholar]
  71. Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N. 71.  et al. 2014. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J 8:71403–17 [Google Scholar]
  72. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 72.  2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:2195–206 [Google Scholar]
  73. Schwabe RF, Jobin C. 73.  2013. The microbiome and cancer. Nat. Rev. Cancer 13:11800–812 [Google Scholar]
  74. Sears CL, Garrett WS. 74.  2014. Microbes, microbiota, and colon cancer. Cell Host Microbe 15:3317–28 [Google Scholar]
  75. Signat B, Roques C, Poulet P, Duffaut D. 75.  2011. Fusobacterium nucleatum in periodontal health and disease. Curr. Issues Mol. Biol. 13:225–36 [Google Scholar]
  76. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R. 76.  et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:1128–39 [Google Scholar]
  77. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K. 77.  et al. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:62641084–89With Vétizou et al. (88), implicated the microbiota in effective responses to (PD-1) immunotherapy against CRC. [Google Scholar]
  78. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA. 78.  et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:6145569–73 [Google Scholar]
  79. Song X, Gao H, Lin Y, Yao Y, Zhu S. 79.  et al. 2014. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity 40:1140–52 [Google Scholar]
  80. Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R. 80.  et al. 2011. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17:91971–78 [Google Scholar]
  81. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR. 81.  et al. 1992. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:5057668–70 [Google Scholar]
  82. Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W. 82.  et al. 2014. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 74:51311–18 [Google Scholar]
  83. Topalian SL, Drake CG, Pardoll DM. 83.  2015. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:4450–61 [Google Scholar]
  84. Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P. 84.  et al. 2006. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 12:8782–86 [Google Scholar]
  85. Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C. 85.  2009. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE 4:6e6026 [Google Scholar]
  86. Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H. 86.  2008. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int. J. Oncol. 32:3609–17 [Google Scholar]
  87. Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML. 87.  et al. 2010. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. USA 107:4218132–37 [Google Scholar]
  88. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N. 88.  et al. 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:62641079–84With Sivan et al. (77), implicated the microbiota in effective responses to (CTLA-4) immunotherapy against CRC. [Google Scholar]
  89. Viljoen KS, Dakshinamurthy A, Goldberg P, Blackburn JM. 89.  2015. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS ONE 10:3e0119462 [Google Scholar]
  90. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G. 90.  et al. 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:2220–30 [Google Scholar]
  91. Wang D, Dubois RN. 91.  2010. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29:6781–88 [Google Scholar]
  92. Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. 92.  2008. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 68:239909–17 [Google Scholar]
  93. Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM. 93.  2012. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology 142:3543–47 [Google Scholar]
  94. Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA. 94.  et al. 2013. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1:116 [Google Scholar]
  95. Weber G, Shendure J, Tanenbaum DM, Church GM, Meyerson M. 95.  2002. Identification of foreign gene sequences by transcript filtering against the human genome. Nat. Genet. 30:2141–42 [Google Scholar]
  96. Wu S, Rhee K-J, Albesiano E, Rabizadeh S, Wu X. 96.  et al. 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15:91016–22Demonstrated ETBF as driver of Th17 responses in a Bft-dependent manner in colitis-associated tumorigenesis. [Google Scholar]
  97. Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA. 97.  et al. 2015. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17:3385–91 [Google Scholar]
  98. Zackular JP, Rogers MA, Ruffin MT 4th, Schloss PD. 98.  2014. The human gut microbiome as a screening tool for colorectal caner. Cancer Prev. Res. 7:111112–21 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error