1932

Abstract

All life on Earth is dependent on biologically mediated electron transfer (i.e., redox) reactions that are far from thermodynamic equilibrium. Biological redox reactions originally evolved in prokaryotes and ultimately, over the first ∼2.5 billion years of Earth's history, formed a global electronic circuit. To maintain the circuit on a global scale requires that oxidants and reductants be transported; the two major planetary wires that connect global metabolism are geophysical fluids—the atmosphere and the oceans. Because all organisms exchange gases with the environment, the evolution of redox reactions has been a major force in modifying the chemistry at Earth's surface. Here we briefly review the discovery and consequences of redox reactions in microbes with a specific focus on the coevolution of life and geochemical phenomena.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095521
2016-09-08
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/annurev-micro-102215-095521.html?itemId=/content/journals/10.1146/annurev-micro-102215-095521&mimeType=html&fmt=ahah

Literature Cited

  1. Anbar AD. 1.  2008. Elements and evolution. Science 322:1481–83 [Google Scholar]
  2. Anbar AD, Knoll AH. 2.  2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge?. Science 297:1137–42 [Google Scholar]
  3. Arnold GL, Anbar AD, Barling J, Lyons TW. 3.  2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304:87–90 [Google Scholar]
  4. Bardgett RD, Freeman C, Ostle NJ. 4.  2008. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2:805–14 [Google Scholar]
  5. Baymann F, Lebrun E, Brugna M, Schoepp-Cothenet B, Giudici-Orticoni MT, Nitschke W. 5.  2003. The redox protein construction kit: Pre-last universal common ancestor evolution of energy-conserving enzymes. Philos. Trans. R. Soc. B 358:267–74 [Google Scholar]
  6. Beichman CA, Woolf NJ, Lindensmith CA. 6.  1999. The Terrestrial Planet Finder (TPF): a NASA origins program to search for habitable planets JPL Publ. 99-003 TPF Sci. Work. Group [Google Scholar]
  7. Bhattacharya D, Medlin L. 7.  1998. Algal phylogeny and the origin of land plants. Plant Physiol. 116:19–15 [Google Scholar]
  8. Blankenship RE. 8.  2010. Early evolution of photosynthesis. Plant Physiol. 154:434–38 [Google Scholar]
  9. Blankenship RE, Hartman H. 9.  1998. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23:94–97 [Google Scholar]
  10. Blankenship RE, Sadekar S, Raymond J. 10.  2007. The evolutionary transition from anoxygenic to oxygenic photosynthesis. Evolution of Primary Producers in the Sea PG Falkowski, AH Knoll 21–35 Burlington, MA: Academic [Google Scholar]
  11. Boyd ES, Peters JW. 11.  2013. New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 4:1–12 [Google Scholar]
  12. Braakman R, Smith E. 12.  2012. The emergence and early evolution of biological carbon-fixation. PLOS Comput. Biol. 8:e1002455 [Google Scholar]
  13. Braterman PS, Cairns-Smith AG, Sloper RW, Truscott TG, Craw M. 13.  1984. Photo-oxidation of iron (II) in water between pH 7.5 and 4.0. J. Chem. Soc. Dalton Trans. 7:1441–45 [Google Scholar]
  14. Caetano-Anollés G, Caetano-Anollés D. 14.  2003. An evolutionarily structured universe of protein architecture. Genome Res. 13:1563–71 [Google Scholar]
  15. Cairns-Smith AG. 15.  1978. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807–8 [Google Scholar]
  16. Canfield DE. 16.  1998. A new model for Proterozoic ocean chemistry. Nature 396:450–53 [Google Scholar]
  17. Canfield DE. 17.  2005. The early history of atmospheric oxygen: homage to Robert M. Garrels.. Annu. Rev. Earth Planet. Sci. 33:1–36 [Google Scholar]
  18. Canfield DE. 18.  2014. Oxygen: A Four Billion Year History Princeton, NJ: Princeton Univ. Press [Google Scholar]
  19. Canfield DE, Glazer AN, Falkowski PG. 19.  2010. The evolution and future of Earth's nitrogen cycle. Science 330:192–96 [Google Scholar]
  20. Canfield DE, Rosing MT, Bjerrum C. 20.  2006. Early anaerobic metabolisms. Philos. Trans. R. Soc. B 361:1819–36 [Google Scholar]
  21. Cardona T, Murray JW, Rutherford AW. 21.  2015. Origin and evolution of water oxidation before the last common ancestor of the Cyanobacteria. Mol. Bio. Evol. 32:1310–28 [Google Scholar]
  22. Castresana J, Lübben M, Saraste M, Higgins DG. 22.  1994. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J. 13:2516 [Google Scholar]
  23. Choi M, Davidson VL. 23.  2011. Cupredoxins—a study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 3:140–51 [Google Scholar]
  24. Da Silva JF, Williams RJP. 24.  2001. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life New York: Oxford Univ. Press [Google Scholar]
  25. David LA, Alm EJ. 25.  2011. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96 [Google Scholar]
  26. Dayhoff MO, Eck RV. 26.  1966. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–66 [Google Scholar]
  27. Dobretsov N, Kolchanov N, Suslov V. 27.  2008. On important stages of geosphere and biosphere evolution. Biosphere Origin and Evolution3–23 New York: Springer [Google Scholar]
  28. Doney SC. 28.  2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–16 [Google Scholar]
  29. Ducluzeau A-L, Van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W. 29.  2009. Was nitric oxide the first deep electron sink?. Trends Biochem. Sci. 34:9–15 [Google Scholar]
  30. Dupont CL, Yang S, Palenik B, Bourne PE. 30.  2006. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. PNAS 103:17822–7 [Google Scholar]
  31. Dworkin M, Gutnick D. 31.  2012. Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiol. Rev. 36:364–79 [Google Scholar]
  32. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ. 32.  et al. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–38 [Google Scholar]
  33. Falkowski P, Scholes R, Boyle E, Canadell J, Canfield D. 33.  et al. 2000. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–96 [Google Scholar]
  34. Falkowski PG, Fenchel T, Delong EF. 34.  2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320:1034–39 [Google Scholar]
  35. Falkowski PG, Godfrey LV. 35.  2008. Electrons, life and the evolution of Earth's oxygen cycle. Philos. Trans. R. Soc. B 363:2705–16 [Google Scholar]
  36. Falkowski PG, Isozaki Y. 36.  2008. The story of O2. Science 322:540–42 [Google Scholar]
  37. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA. 37.  et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354–60 [Google Scholar]
  38. Falkowski PG, Raven JA. 38.  2007. Aquatic Photosynthesis Princeton, NJ: Princeton Univ. Press, 2nd ed.. [Google Scholar]
  39. Farquhar J, Bao H, Thiemens M. 39.  2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58 [Google Scholar]
  40. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 40.  1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40 [Google Scholar]
  41. Fontecave M. 41.  2006. Iron-sulfur clusters: ever-expanding roles. Nat. Chem. Biol. 2:171–74 [Google Scholar]
  42. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN. 42.  et al. 2013. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368:20130164 [Google Scholar]
  43. Fuchs G. 43.  2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?. Annu. Rev. Microbiol. 65:631–58 [Google Scholar]
  44. Gibney BR, Mulholland SE, Rabanal F, Dutton PL. 44.  1996. Ferredoxin and ferredoxin-heme maquettes. PNAS 93:15041–46 [Google Scholar]
  45. Godfrey LV, Falkowski PG. 45.  2009. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2:725–29 [Google Scholar]
  46. Granick S. 46.  1965. Evolution of heme and chlorophyll. Evolving Genes Proteins V. Bryson, HJ Vogel 67–68 New York: Academic Press [Google Scholar]
  47. Gruber N, Galloway JN. 47.  2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293–96 [Google Scholar]
  48. Guzman MI, Martin ST. 48.  2009. Prebiotic metabolism: Production by mineral photoelectrochemistry of α-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology 9:833–42 [Google Scholar]
  49. Handoh IC, Lenton TM. 49.  2003. Periodic mid-Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles. Glob. Biogeochem. Cycles 17:1092 [Google Scholar]
  50. Harel A, Bromberg Y, Falkowski PG, Bhattacharya D. 50.  2014. Evolutionary history of redox metal-binding domains across the tree of life. PNAS 111:7042–47 [Google Scholar]
  51. Harel A, Falkowski P, Bromberg Y. 51.  2012. TrAnsFuSE refines the search for protein function: Oxidoreductases. Integr. Biol. 4:765–77 [Google Scholar]
  52. Hazen RM. 52.  2013. Paleomineralogy of the Hadean Eon: a preliminary species list. Am. J. Sci. 313:807–43 [Google Scholar]
  53. Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM. 53.  et al. 2008. Mineral evolution. Am. Mineral. 93:1693–720 [Google Scholar]
  54. Hazen RM, Sverjensky DA. 54.  2010. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb. Perspect. Biol. 2:a002162 [Google Scholar]
  55. Holland HD. 55.  2006. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B 361:903–15 [Google Scholar]
  56. Hoppe F. 56.  1862. Ueber das verhalten des blutfarbstoffes im spectrum des sonnenlichtes. Virchows Arch. 23:446–49 [Google Scholar]
  57. Hosseinzadeh P, Lu Y. 57.  2015. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. Biochim. Biophys. Acta Bioenerg. 1857557–81 [Google Scholar]
  58. Hügler M, Sievert SM. 58.  2011. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Mar. Sci. 3:261–89 [Google Scholar]
  59. Illergard K, Ardell DH, Elofsson A. 59.  2009. Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins 77:499–508 [Google Scholar]
  60. Imlay JA. 60.  2006. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59:1073–82 [Google Scholar]
  61. Jie X, Nita S, Carrick ME, Martin AAS. 61.  2013. Reactive oxygen species at the oxide/water interface: formation mechanisms and implications for prebiotic chemistry and the origin of life. Earth Planet. Sci. Lett. 363:156–67 [Google Scholar]
  62. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D'Hondt S. 62.  2012. Global distribution of microbial abundance and biomass in subseafloor sediment. PNAS 109:16213–16 [Google Scholar]
  63. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW. 63.  et al. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–3 [Google Scholar]
  64. Kelley DS, Baross JA, Delaney JR. 64.  2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30:385–491 [Google Scholar]
  65. Kim JD, Rodriguez-Granillo A, Case DA, Nanda V, Falkowski PG. 65.  2012. Energetic selection of topology in ferredoxins. PLOS Comput. Biol. 8:e1002463 [Google Scholar]
  66. Kim JD, Senn S, Harel A, Jelen BI, Falkowski PG. 66.  2013. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases. Philos. Trans. R. Soc. B 368:20120257 [Google Scholar]
  67. Kim JD, Yee N, Nanda V, Falkowski PG. 67.  2013. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides. PNAS 110:10073–77 [Google Scholar]
  68. King GM, Kirchman D, Salyers AA, Schlesinger W, Tiedje JM. 68.  2001. Global Environmental Change: Microbial Contributions, Microbial Solutions Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  69. Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S. 69.  et al. 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183:6028–35 [Google Scholar]
  70. Kluyver AJ, Donker HJ. 70.  1926. Die einheit in der biochemie Berlin: Borntraeger [Google Scholar]
  71. Knittel K, Boetius A. 71.  2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63:311–34 [Google Scholar]
  72. Knoll AH. 72.  2014. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6:a016121 [Google Scholar]
  73. Krishna SS, Sadreyev RI, Grishin NV. 73.  2006. A tale of two ferredoxins: sequence similarity and structural differences. BMC Struct. Biol. 6:8 [Google Scholar]
  74. Lane N. 74.  2015. The Vital Question: Energy, Evolution, and the Origins of Complex Life New York: W.W. Norton [Google Scholar]
  75. Lane N, Martin WF. 75.  2012. The origin of membrane bioenergetics. Cell 151:1406–16 [Google Scholar]
  76. Lavoisier A-L. 76.  1774. Opuscules Physiques et Chimiques Paris: Durand Neveu [Google Scholar]
  77. Lenton TM, Boyle RA, Poulton SW, Shields-Zhou GA, Butterfield NJ. 77.  2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7:257–65 [Google Scholar]
  78. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S. 78.  et al. 2014. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 114:4366–469 [Google Scholar]
  79. Liu R, Hu J. 79.  2011. Computational prediction of heme-binding residues by exploiting residue interaction network. PLOS ONE 6:e25560 [Google Scholar]
  80. Ljungdhal LG. 80.  1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40:415–50 [Google Scholar]
  81. Lovelock JE, Margulis L. 81.  1974. Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus 26:1–2 [Google Scholar]
  82. Lovley DR. 82.  2002. Dissimilatory metal reduction: from early life to bioremediation. ASM News 68:231–37 [Google Scholar]
  83. Lyons TW, Reinhard CT, Planavsky NJ. 83.  2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15 [Google Scholar]
  84. Manning CE. 84.  2014. Geochemistry: a piece of the deep carbon puzzle. Nat. Geosci. 7:333–34 [Google Scholar]
  85. Matthews E. 85.  1994. Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Glob. Biogeochem. Cycles 8:411–39 [Google Scholar]
  86. Mauzerall DC. 86.  1998. Evolution of porphyrins. Clin. Dermatol. 16:195–201 [Google Scholar]
  87. Mercer-Smith JA, Mauzerall DC. 87.  1984. Photochemistry of porphyrins: a model for the origin of photosynthesis. Photochem. Photobiol. 39:397–405 [Google Scholar]
  88. Mitchell P. 88.  1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–48 [Google Scholar]
  89. Moffet DA, Foley J, Hecht MH. 89.  2003. Midpoint reduction potentials and heme binding stoichiometries of de novo proteins from designed combinatorial libraries. Biophys. Chem. 105:231–39 [Google Scholar]
  90. Morowitz HJ, Kostelnik JD, Yang J, Cody GD. 90.  2000. The origin of intermediary metabolism. PNAS 97:7704–8 [Google Scholar]
  91. Mulholland SE, Gibney BR, Rabanal F, Dutton PL. 91.  1999. Determination of nonligand amino acids critical to [4Fe-4S] 2+/+ assembly in ferredoxin maquettes. Biochemistry 38:10442–48 [Google Scholar]
  92. Mulkidjanian AY, Galperin MY. 92.  2009. On the origin of life in the zinc world: validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol. Dir. 4:27 [Google Scholar]
  93. Nealson K, Berelson W. 93.  2003. Layered microbial communities and the search for life in the universe. Geomicrobiol. J. 20:451–62 [Google Scholar]
  94. Nealson KH, Saffarini D. 94.  1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311–43 [Google Scholar]
  95. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ. 95.  et al. 1999. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–29 [Google Scholar]
  96. Nernst W. 96.  1889. Die Elektromotorische Wirksamkeit der Jonen Leipzig, Ger.: Engelmann [Google Scholar]
  97. Nitschke W, Russell MJ. 97.  2009. Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. J. Mol. Evol. 69:481–96 [Google Scholar]
  98. Nitschke W, Russell MJ. 98.  2013. Beating the acetyl coenzyme A-pathway to the origin of life. Philos. Trans. R. Soc. B 368:20120258 [Google Scholar]
  99. Offre P, Spang A, Schleper C. 99.  2013. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67:437–57 [Google Scholar]
  100. Page CC, Moser CC, Chen X, Dutton PL. 100.  1999. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402:47–52 [Google Scholar]
  101. Page CC, Moser CC, Dutton PL. 101.  2003. Mechanism for electron transfer within and between proteins. Curr. Opin. Chem. Biol. 7:551–56 [Google Scholar]
  102. Pasek MA. 102.  2008. Rethinking early Earth phosphorus geochemistry. PNAS 105:853–58 [Google Scholar]
  103. Piqueras M. 103.  1998. Meeting the biospheres: on the translations of Vernadsky's work. Int. Microbiol. 1:165–70 [Google Scholar]
  104. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T. 104.  et al. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–96 [Google Scholar]
  105. Ragsdale SW. 105.  2006. Metals and their scaffolds to promote difficult enzymatic reactions. Chem. Rev. 106:3317–37 [Google Scholar]
  106. Ragsdale SW. 106.  2008. Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann. N. Y. Acad. Sci. 1125:129–36 [Google Scholar]
  107. Raymond J, Segrè D. 107.  2006. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–67 [Google Scholar]
  108. Rees DC, Howard JB. 108.  2003. The interface between the biological and inorganic worlds: iron-sulfur metalloclusters. Science 300:929–31 [Google Scholar]
  109. Reinhard CT, Planavsky NJ, Robbins LJ, Partin CA, Gill BC. 109.  et al. 2013. Proterozoic ocean redox and biogeochemical stasis. PNAS 110:5357–62 [Google Scholar]
  110. Richardson DJ. 110.  2000. Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551–71 [Google Scholar]
  111. Roels J, Verstraete W. 111.  2001. Biological formation of volatile phosphorus compounds. Bioresour. Technol. 79:243–50 [Google Scholar]
  112. Rousk J, Bengtson P. 112.  2014. Microbial regulation of global biogeochemical cycles. Front. Microbiol. 5:103 [Google Scholar]
  113. Russell MJ. 113.  2007. The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor. 55:133–79 [Google Scholar]
  114. Russell MJ, Martin W. 114.  2004. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29:358–63 [Google Scholar]
  115. Saito MA, Sigman DM, Morel FMM. 115.  2003. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary?. Inorg. Chim. Acta 356:308–18 [Google Scholar]
  116. Schlesinger WH, Bernhardt ES. 116.  2013. The biosphere: biogeochemical cycling on land. Biogeochemistry WHSS Bernhardt 173–231 Boston: Academic Press, 3rd edition. [Google Scholar]
  117. Schlesinger WH, Bernhardt ES. 117.  2013. The biosphere: the carbon cycle of terrestrial ecosystems. Biogeochemistry WHSS Bernhardt 135–72 Boston: Academic Press, 3rd edition. [Google Scholar]
  118. Schoonen M, Smirnov A, Cohn C. 118.  2004. A perspective on the role of minerals in prebiotic synthesis. AMBIO J. Hum. Environ. 33:539–51 [Google Scholar]
  119. Senn S, Nanda V, Falkowski P, Bromberg Y. 119.  2014. Function-based assessment of structural similarity measurements using metal co-factor orientation. Proteins Struct. Funct. Bioinform. 82:648–56 [Google Scholar]
  120. Stokes GG. 120.  1863. On the reduction and oxidation of the colouring matter of the blood. Proc. R. Soc. 13:355–64 [Google Scholar]
  121. Tian F, Toon OB, Pavlov AA, De Sterck H. 121.  2005. A hydrogen-rich early Earth atmosphere. Science 308:1014–17 [Google Scholar]
  122. Tipton K, Boyce S. 122.  2000. History of the enzyme nomenclature system. Bioinformatics 16:34–40 [Google Scholar]
  123. Trefil J, Morowitz HJ, Smith E. 123.  2009. A case is made for the descent of electrons. Am. Sci. 97:206–13 [Google Scholar]
  124. Trumpower BL. 124.  1990. The protonmotive Q cycle: energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 265:11409 [Google Scholar]
  125. Vallee BL, Williams R. 125.  1968. Metalloenzymes: the entatic nature of their active sites. PNAS 59:498 [Google Scholar]
  126. Vernadsky VI. 126.  1997. The Biosphere New York: Copernicus [Google Scholar]
  127. Volbeda A, Fontecilla-Camps JC. 127.  2006. Catalytic nickel–iron–sulfur clusters: From minerals to enzymes. Bioorganometallic Chemistry G Simonneaux 57–82 Berlin: Springer [Google Scholar]
  128. Wächtershäuser G. 128.  1988. Pyrite formation, the first energy source for life: a hypothesis. Syst. Appl. Microbiol. 10:207–10 [Google Scholar]
  129. Wächtershäuser G. 129.  1990. Evolution of the first metabolic cycles. PNAS 87:200–4 [Google Scholar]
  130. Wackett LP, Dodge AG, Ellis LB. 130.  2004. Microbial genomics and the periodic table. Appl. Environ. Microbiol. 70:647–55 [Google Scholar]
  131. Whitman WB, Coleman DC, Wiebe WJ. 131.  1998. Prokaryotes: the unseen majority. PNAS 95:6578–83 [Google Scholar]
  132. Williams R. 132.  1981. The Bakerian Lecture, 1981: natural selection of the chemical elements. Proc. R. Soc. B 213:361–97 [Google Scholar]
  133. Winogradsky S. 133.  1888. Zur Morphologie und Physiologie der Schwefelbacterien Leipzig, Ger.: Felix [Google Scholar]
  134. Wong JT-F, Lazcano A. 134.  2009. Prebiotic Evolution and Astrobiology Austin, TX: Landes Biosci. [Google Scholar]
  135. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE. 135.  2000. Molecular evidence for the early evolution of photosynthesis. Science 289:1724–30 [Google Scholar]
  136. Zhang XV, Ellery SP, Friend CM, Holland HD, Michel FM. 136.  et al. 2007. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synthesis. J. Photochem. Photobiol. A 185:301–11 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095521
Loading
/content/journals/10.1146/annurev-micro-102215-095521
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error