1932

Abstract

The bacterial cytoplasmic membrane is composed of roughly equal proportions of lipids and proteins. The main lipid components are phospholipids, which vary in acyl chain length, saturation, and branching and carry head groups that vary in size and charge. Phospholipid variants determine membrane properties such as fluidity and charge that in turn modulate interactions with membrane-associated proteins. We summarize recent advances in understanding bacterial membrane structure and function, focusing particularly on the possible existence and significance of specialized membrane domains. We review the role of membrane curvature as a spatial cue for recruitment and regulation of proteins involved in morphogenic functions, especially elongation and division. Finally, we examine the role of the membrane, especially regulation of synthesis and fluid properties, in the life cycle of cell wall–deficient L-form bacteria.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095630
2017-09-08
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/71/1/annurev-micro-102215-095630.html?itemId=/content/journals/10.1146/annurev-micro-102215-095630&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DW, Wu LJ, Errington J. 1.  2015. Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J 34:491–501 [Google Scholar]
  2. Albanesi D, de Mendoza D. 2.  2016. FapR: from control of membrane lipid homeostasis to a biotechnological tool. Front. Mol. Biosci. 3:64 [Google Scholar]
  3. Allan EJ, Hoischen C, Gumpert J. 3.  2009. Bacterial L-forms. Adv. Appl. Microbiol. 68:1–39 [Google Scholar]
  4. Antonny B. 4.  2006. Membrane deformation by protein coats. Curr. Opin. Cell Biol. 18:386–94 [Google Scholar]
  5. Bach JN, Bramkamp M. 5.  2013. Flotillins functionally organize the bacterial membrane. Mol. Microbiol. 88:1205–17 [Google Scholar]
  6. Barak I, Muchova K. 6.  2013. The role of lipid domains in bacterial cell processes. Int. J. Mol. Sci. 14:4050–65 [Google Scholar]
  7. Barak I, Muchova K, Wilkinson AJ, O'Toole PJ, Pavlendova N. 7.  2008. Lipid spirals in Bacillus subtilis and their role in cell division. Mol. Microbiol. 68:1315–27 [Google Scholar]
  8. Bernal P, Muñoz-Rojas J, Hurtado A, Ramos JL, Segura A. 8.  2007. A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ. Microbiol. 9:1135–45 [Google Scholar]
  9. Bigay J, Antonny B. 9.  2012. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23:886–95 [Google Scholar]
  10. Billings G, Ouzounov N, Ursell T, Desmarais SM, Shaevitz J. 10.  et al. 2014. De novo morphogenesis in L-forms via geometric control of cell growth. Mol. Microbiol. 93:883–96 [Google Scholar]
  11. Brown DA. 11.  2002. Isolation and use of rafts. Curr. Protoc. Immunol. Suppl. 51: 11.10 1–-23. https://doi.org/10.1002/0471142735.im1110s51 [Crossref] [Google Scholar]
  12. Chichili GR, Rodgers W. 12.  2009. Cytoskeleton-membrane interactions in membrane raft structure. Cell. Mol. Life Sci. 66:2319–28 [Google Scholar]
  13. Cornell RB, Taneva SG. 13.  2006. Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties. Curr. Protein Pept. Sci. 7:539–52 [Google Scholar]
  14. De Leij L, Witholt B. 14.  1977. Structural heterogeneity of the cytoplasmic and outer membranes of Escherichia coli. Biochim. Biophys. Acta 471:92–104 [Google Scholar]
  15. Dempwolff F, Moller HM, Graumann PL. 15.  2012. Synthetic motility and cell shape defects associated with deletions of flotillin/reggie paralogs in Bacillus subtilis and interplay of these proteins with NfeD proteins. J. Bacteriol. 194:4652–61 [Google Scholar]
  16. Dempwolff F, Wischhusen HM, Specht M, Graumann PL. 16.  2012. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance. BMC Microbiol 12:298 [Google Scholar]
  17. Domínguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Söldner R, Carballido-López R. 17.  2011. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:225–28 [Google Scholar]
  18. Donovan C, Bramkamp M. 18.  2009. Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155:1786–99 [Google Scholar]
  19. Draper W, Liphardt J. 19.  2017. Origins of chemoreceptor curvature sorting in Escherichia coli. Nat. Commun. 8:14838 [Google Scholar]
  20. Drin G, Antonny B. 20.  2010. Amphipathic helices and membrane curvature. FEBS Lett 584:1840–47 [Google Scholar]
  21. Duman R, Ishikawa S, Celik I, Strahl H, Ogasawara N. 21.  et al. 2013. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. PNAS 110:E4601–10 [Google Scholar]
  22. Edwards DH, Errington J. 22.  1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24:905–15 [Google Scholar]
  23. Edwards DH, Thomaides HB, Errington J. 23.  2000. Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. EMBO J. 19:2719–27 [Google Scholar]
  24. Endres RG. 24.  2009. Polar chemoreceptor clustering by coupled trimers of dimers. Biophys. J. 96:453–63 [Google Scholar]
  25. Errington J. 25.  2013. L-form bacteria, cell walls and the origins of life. Open Biol 3:120143 [Google Scholar]
  26. Errington J. 26.  2015. Bacterial morphogenesis and the enigmatic MreB helix. Nat. Rev. Microbiol. 13:241–48 [Google Scholar]
  27. Errington J, Mickiewicz K, Kawai Y, Wu LJ. 27.  2016. L-form bacteria, chronic diseases and the origins of life. Phil. Trans. R. Soc. B 371:20150494 [Google Scholar]
  28. Eswaramoorthy P, Erb ML, Gregory JA, Silverman J, Pogliano K. 28.  et al. 2011. Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis. mBio 2:e00257–11 [Google Scholar]
  29. Fadda D, Santona A, D'Ulisse V, Ghelardini P, Ennas MG. 29.  et al. 2007. Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. J. Bacteriol. 189:1288–98 [Google Scholar]
  30. Favini-Stabile S, Contreras-Martel C, Thielens N, Dessen A. 30.  2013. MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environ. Microbiol. 15:3218–28 [Google Scholar]
  31. Fishov I, Woldringh CL. 31.  1999. Visualization of membrane domains in Escherichia coli. Mol. Microbiol. 32:1166–72 [Google Scholar]
  32. Flardh K, Richards DM, Hempel AM, Howard M, Buttner MJ. 32.  2012. Regulation of apical growth and hyphal branching in Streptomyces. Curr. Opin. Microbiol. 15:737–43 [Google Scholar]
  33. Frolov VA, Shnyrova AV, Zimmerberg J. 33.  2011. Lipid polymorphisms and membrane shape. Cold Spring Harb. Perspect. Biol. 3:a004747 [Google Scholar]
  34. Ganchev DN, Hasper HE, Breukink E, de Kruijff B. 34.  2006. Size and orientation of the lipid II headgroup as revealed by AFM imaging. Biochemistry 45:6195–202 [Google Scholar]
  35. Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T. 35.  2011. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–25 [Google Scholar]
  36. Gidden J, Denson J, Liyanage R, Ivey DM, Lay JO. 36.  2009. Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. Int. J. Mass Spectrom 283:178–84 [Google Scholar]
  37. Gill RL Jr., Castaing JP, Hsin J, Tan IS, Wang X. 37.  et al. 2015. Structural basis for the geometry-driven localization of a small protein. PNAS 112:E1908–15 [Google Scholar]
  38. Govindarajan S, Elisha Y, Nevo-Dinur K, Amster-Choder O. 38.  2013. The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio 4:e00443–13 [Google Scholar]
  39. Gruszecki WI, Strzalka K. 39.  2005. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta 1740:108–15 [Google Scholar]
  40. Honigmann A, Pralle A. 40.  2016. Compartmentalization of the cell membrane. J. Mol. Biol. 428:4739–48 [Google Scholar]
  41. Horiuchi S, Marty-Mazars D, Tai PC, Davis BD. 41.  1983. Localization and quantitation of proteins characteristic of the complexed membrane of Bacillus subtilis. J. Bacteriol. 154:1215–21 [Google Scholar]
  42. Huang KC, Mukhopadhyay R, Wingreen NS. 42.  2006. A curvature-mediated mechanism for localization of lipids to bacterial poles. PLOS Comput. Biol. 2:e151 [Google Scholar]
  43. Huang KC, Ramamurthi KS. 43.  2010. Macromolecules that prefer their membranes curvy. Mol. Microbiol. 76:822–32 [Google Scholar]
  44. Jia Z, O'Mara ML, Zuegg J, Cooper MA, Mark AE. 44.  2011. The effect of environment on the recognition and binding of vancomycin to native and resistant forms of lipid II. Biophys. J. 101:2684–92 [Google Scholar]
  45. Jovanovic G, Mehta P, McDonald C, Davidson AC, Uzdavinys P. 45.  et al. 2014. The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli. J. Mol. Biol. 426:1498–511 [Google Scholar]
  46. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K. 46.  2004. Cardiolipin domains in Bacillus subtilis Marburg membranes. J. Bacteriol. 186:1475–83 [Google Scholar]
  47. Kawai Y, Mercier R, Errington J. 47.  2014. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 24:863–67 [Google Scholar]
  48. Kawai Y, Mercier R, Wu LJ, Domínguez-Cuevas P, Oshima T, Errington J. 48.  2015. Cell growth of wall-free L-form bacteria is limited by oxidative damage. Curr. Biol. 25:1613–18 [Google Scholar]
  49. Khemici V, Poljak L, Luisi BF, Carpousis AJ. 49.  2008. The RNase E of Escherichia coli is a membrane-binding protein. Mol. Microbiol. 70:799–813 [Google Scholar]
  50. Klein W, Weber MH, Marahiel MA. 50.  1999. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J. Bacteriol. 181:5341–49 [Google Scholar]
  51. Kooijman EE, Carter KM, van Laar EG, Chupin V, Burger KN, de Kruijff B. 51.  2005. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special?. Biochemistry 44:17007–15 [Google Scholar]
  52. Koppelman CM, Den Blaauwen T, Duursma MC, Heeren RM, Nanninga N. 52.  2001. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol. 183:6144–47 [Google Scholar]
  53. Lee YH, Kingston AW, Helmann JD. 53.  2012. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis. J. Bacteriol. 194:993–1001 [Google Scholar]
  54. Lenarcic R, Halbedel S, Visser L, Shaw M, Wu LJ. 54.  et al. 2009. Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272–82 [Google Scholar]
  55. Lewis RNAH, Mannock DA, McElhaney RN. 55.  1997. Membrane lipid molecular structure and polymorphism. Curr. Top. Membr. 4425–102 [Google Scholar]
  56. Lin TY, Weibel DB. 56.  2016. Organization and function of anionic phospholipids in bacteria. Appl. Microbiol. Biotechnol. 100:4255–67 [Google Scholar]
  57. Lingwood D, Simons K. 57.  2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50 [Google Scholar]
  58. López D, Kolter R. 58.  2010. Functional microdomains in bacterial membranes. Genes Dev 24:1893–902 [Google Scholar]
  59. Low HH, Sachse C, Amos LA, Löwe J. 59.  2009. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139:1342–52 [Google Scholar]
  60. Lu F, Taghbalout A. 60.  2013. Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II. J. Biol. Chem. 288:7241–51 [Google Scholar]
  61. Lutkenhaus J. 61.  2007. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76:539–62 [Google Scholar]
  62. MacCallum JL, Bennett WFD, Tieleman DP. 62.  2008. Distribution of amino acids in a lipid bilayer from computer simulations. Biophys. J. 94:3393–404 [Google Scholar]
  63. Martinez MA, Zaballa ME, Schaeffer F, Bellinzoni M, Albanesi D. 63.  et al. 2010. A novel role of malonyl-ACP in lipid homeostasis. Biochemistry 49:3161–67 [Google Scholar]
  64. Marty-Mazars D, Horiuchi S, Tai PC, Davis BD. 64.  1983. Proteins of ribosome-bearing and free-membrane domains in Bacillus subtilis. J. Bacteriol. 154:1381–88 [Google Scholar]
  65. Matsumoto K, Kusaka J, Nishibori A, Hara H. 65.  2006. Lipid domains in bacterial membranes. Mol. Microbiol. 61:1110–17 [Google Scholar]
  66. Mauriello EM. 66.  2013. Cell biology of bacterial sensory modules. Front. Biosci. 18:928–43 [Google Scholar]
  67. Mazor S, Regev T, Mileykovskaya E, Margolin W, Dowhan W, Fishov I. 67.  2008. Mutual effects of MinD-membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochim. Biophys. Acta 1778:2496–504 [Google Scholar]
  68. Mazor S, Regev T, Mileykovskaya E, Margolin W, Dowhan W, Fishov I. 68.  2008. Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochim. Biophys. Acta 1778:2505–11 [Google Scholar]
  69. Mbamala EC, Ben-Shaul A, May S. 69.  2005. Domain formation induced by the adsorption of charged proteins on mixed lipid membranes. Biophys. J. 88:1702–14 [Google Scholar]
  70. McKenney PT, Eichenberger P. 70.  2012. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol. Microbiol. 83:245–60 [Google Scholar]
  71. Mercier R, Domínguez-Cuevas P, Errington J. 71.  2012. Crucial role for membrane fluidity in proliferation of primitive cells. Cell Rep 1:417–23 [Google Scholar]
  72. Mercier R, Kawai Y, Errington J. 72.  2013. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152:997–1007 [Google Scholar]
  73. Mercier R, Kawai Y, Errington J. 73.  2014. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. eLife 3:e04629 [Google Scholar]
  74. Mielich-Süss B, Schneider J, Lopez D. 74.  2013. Overproduction of flotillin influences cell differentiation and shape in Bacillus subtilis. mBio 4:e00719–13 [Google Scholar]
  75. Mileykovskaya E, Dowhan W. 75.  2000. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol. 182:1172–75 [Google Scholar]
  76. Mileykovskaya E, Dowhan W. 76.  2005. Role of membrane lipids in bacterial division-site selection. Curr. Opin. Microbiol. 8:135–42 [Google Scholar]
  77. Mileykovskaya E, Dowhan W. 77.  2009. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta 1788:2084–91 [Google Scholar]
  78. Mileykovskaya E, Fishov I, Fu X, Corbin BD, Margolin W, Dowhan W. 78.  2003. Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo. J. Biol. Chem. 278:22193–98 [Google Scholar]
  79. Mileykovskaya E, Ryan AC, Mo X, Lin CC, Khalaf KI. 79.  et al. 2009. Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J. Biol. Chem. 284:2990–3000 [Google Scholar]
  80. Mohammadi T, Karczmarek A, Crouvoisier M, Bouhss A, Mengin-Lecreulx D, den Blaauwen T. 80.  2007. The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol. Microbiol. 65:1106–21 [Google Scholar]
  81. Muchova K, Wilkinson AJ, Barak I. 81.  2011. Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan. FEMS Microbiol. Lett. 325:92–98 [Google Scholar]
  82. Mukhopadhyay R, Huang KC, Wingreen NS. 82.  2008. Lipid localization in bacterial cells through curvature-mediated microphase separation. Biophys. J. 95:1034–49 [Google Scholar]
  83. Mulgrew-Nesbitt A, Diraviyam K, Wang J, Singh S, Murray P. 83.  et al. 2006. The role of electrostatics in protein–membrane interactions. Biochim. Biophys. Acta 1761:812–26 [Google Scholar]
  84. Müller A, Wenzel M, Strahl H, Grein F, Saaki TNV. 84.  et al. 2016. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. PNAS 113:45E7077–86 [Google Scholar]
  85. Nakayama H, Kurokawa K, Lee BL. 85.  2012. Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 279:4247–68 [Google Scholar]
  86. Nicolson GL. 86.  2014. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 1838:1451–66 [Google Scholar]
  87. Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K. 87.  2005. Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J. Bacteriol. 187:2163–74 [Google Scholar]
  88. Oliva MA, Halbedel S, Freund SM, Dutow P, Leonard TA. 88.  et al. 2010. Features critical for membrane binding revealed by DivIVA crystal structure. EMBO J 29:1988–2001 [Google Scholar]
  89. Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB. 89.  2014. Localization of anionic phospholipids in Escherichia coli cells. J. Bacteriol. 196:3386–98 [Google Scholar]
  90. Olshausen PV, Defeu Soufo HJ, Wicker K, Heintzmann R, Graumann PL, Rohrbach A. 90.  2013. Superresolution imaging of dynamic MreB filaments in B. subtilis—a multiple-motor-driven transport?. Biophys. J. 105:1171–81 [Google Scholar]
  91. Oswald F, Varadarajan A, Lill H, Peterman EJ, Bollen YJ. 91.  2016. MreB-dependent organization of the E.coli cytoplasmic membrane controls membrane protein diffusion. Biophys. J. 110:1139–49 [Google Scholar]
  92. Ouzounov N, Nguyen JP, Bratton BP, Jacobowitz D, Gitai Z, Shaevitz JW. 92.  2016. MreB orientation correlates with cell diameter in Escherichia coli. Biophys. J. 111:1035–43 [Google Scholar]
  93. Paradis-Bleau C, Markovski M, Uehara T, Lupoli TJ, Walker S. 93.  et al. 2010. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143:1110–20 [Google Scholar]
  94. Parlitz R, Eitan A, Stjepanovic G, Bahari L, Bange G. 94.  et al. 2007. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282:32176–84 [Google Scholar]
  95. Parsons JB, Rock CO. 95.  2013. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52:249–76 [Google Scholar]
  96. Peterlin P, Arrigler V, Kogej K, Svetina S, Walde P. 96.  2009. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem. Phys. Lipids 159:67–76 [Google Scholar]
  97. Pichoff S, Lutkenhaus J. 97.  2005. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol. Microbiol. 55:1722–34 [Google Scholar]
  98. Pilpel Y, Ben-Tal N, Lancet D. 98.  1999. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. J. Mol. Biol. 294:921–35 [Google Scholar]
  99. Quinn PJ. 99.  2012. Lipid-lipid interactions in bilayer membranes: married couples and casual liaisons. Prog. Lipid Res. 51:179–98 [Google Scholar]
  100. Ramamurthi KS, Clapham KR, Losick R. 100.  2006. Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis. Mol. Microbiol. 62:1547–57 [Google Scholar]
  101. Ramamurthi KS, Lecuyer S, Stone HA, Losick R. 101.  2009. Geometric cue for protein localization in a bacterium. Science 323:1354–57 [Google Scholar]
  102. Ramamurthi KS, Losick R. 102.  2009. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. PNAS 106:13541–45 [Google Scholar]
  103. Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL. 103.  2013. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol. Biol. Cell 24:2340–49 [Google Scholar]
  104. Renner LD, Eswaramoorthy P, Ramamurthi KS, Weibel DB. 104.  2013. Studying biomolecule localization by engineering bacterial cell wall curvature. PLOS ONE 8:e84143 [Google Scholar]
  105. Renner LD, Weibel DB. 105.  2011. Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. PNAS 108:6264–69 [Google Scholar]
  106. Romantsov T, Battle AR, Hendel JL, Martinac B, Wood JM. 106.  2010. Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J. Bacteriol. 192:912–24 [Google Scholar]
  107. Romantsov T, Stalker L, Culham DE, Wood JM. 107.  2008. Cardiolipin controls the osmotic stress response and the subcellular location of transporter ProP in Escherichia coli. J. Biol. Chem. 283:12314–23 [Google Scholar]
  108. Rosch JW, Hsu FF, Caparon MG. 108.  2007. Anionic lipids enriched at the ExPortal of Streptococcus pyogenes. J. Bacteriol. 189:801–6 [Google Scholar]
  109. Saenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O. 109.  et al. 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. PNAS 112:11971–76 [Google Scholar]
  110. Saenz JP, Sezgin E, Schwille P, Simons K. 110.  2012. Functional convergence of hopanoids and sterols in membrane ordering. PNAS 109:14236–40 [Google Scholar]
  111. Salje J, van den Ent F, de Boer P, Lowe J. 111.  2011. Direct membrane binding by bacterial actin MreB. Mol. Cell 43:478–87 [Google Scholar]
  112. Santos TMA, Lin TY, Rajendran M, Anderson SM, Weibel DB. 112.  2014. Polar localization of Escherichia coli chemoreceptors requires an intact Tol-Pal complex. Mol. Microbiol. 92:985–1004 [Google Scholar]
  113. Sapay N, Guermeur Y, Deleage G. 113.  2006. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinform 7:255 [Google Scholar]
  114. Schneider J, Klein T, Mielich-Süss B, Koch G, Franke C. 114.  et al. 2015. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. PLOS Genet 11:e1005140 [Google Scholar]
  115. Schuhmacher JS, Rossmann F, Dempwolff F, Knauer C, Altegoer F. 115.  et al. 2015. MinD-like ATPase FlhG effects location and number of bacterial flagella during C-ring assembly. PNAS 112:3092–97 [Google Scholar]
  116. Shah MB, Sehgal PB. 116.  2007. Nondetergent isolation of rafts. Methods Mol. Biol. 398:21–28 [Google Scholar]
  117. Sharp MD, Pogliano K. 117.  1999. An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. PNAS 96:14553–58 [Google Scholar]
  118. Shih YL, Huang KF, Lai HM, Liao JH, Lee CS. 118.  et al. 2011. The N-terminal amphipathic helix of the topological specificity factor MinE is associated with shaping membrane curvature. PLOS ONE 6:e21425 [Google Scholar]
  119. Shiomi D, Yoshimoto M, Homma M, Kawagishi I. 119.  2006. Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol. Microbiol. 60:894–906 [Google Scholar]
  120. Simons K, Ikonen E. 120.  1997. Functional rafts in cell membranes. Nature 387:569–72 [Google Scholar]
  121. Singer SJ, Nicolson GL. 121.  1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–31 [Google Scholar]
  122. Sohlenkamp C, Geiger O. 122.  2016. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev. 40:133–59 [Google Scholar]
  123. Spanova M, Zweytick D, Lohner K, Klug L, Leitner E. 123.  et al. 2012. Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1821:647–53 [Google Scholar]
  124. Stahlberg H, Kutejova E, Muchova K, Gregorini M, Lustig A. 124.  et al. 2004. Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Mol. Microbiol. 52:1281–90 [Google Scholar]
  125. Strahl H, Bürmann F, Hamoen LW. 125.  2014. The actin homologue MreB organizes the bacterial cell membrane. Nat. Commun. 5:3442 [Google Scholar]
  126. Strahl H, Hamoen LW. 126.  2010. Membrane potential is important for bacterial cell division. PNAS 107:12281–86 [Google Scholar]
  127. Strahl H, Ronneau S, Gonzalez BS, Klutsch D, Schaffner-Barbero C, Hamoen LW. 127.  2015. Transmembrane protein sorting driven by membrane curvature. Nat. Commun. 6:8728 [Google Scholar]
  128. Subramani S, Perdreau-Dahl H, Morth JP. 128.  2016. The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. eLife 5:e11407 [Google Scholar]
  129. Svetina S. 129.  2009. Vesicle budding and the origin of cellular life. ChemPhysChem 10:2769–76 [Google Scholar]
  130. Szeto TH, Rowland SL, Rothfield LI, King GF. 130.  2002. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. PNAS 99:15693–98 [Google Scholar]
  131. Thiem S, Sourjik V. 131.  2008. Stochastic assembly of chemoreceptor clusters in Escherichia coli. Mol. Microbiol. 68:1228–36 [Google Scholar]
  132. Thomaides HB, Freeman M, El Karoui M, Errington J. 132.  2001. Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15:1662–73 [Google Scholar]
  133. Tran TT, Panesso D, Mishra NN, Mileykovskaya E, Guan Z. 133.  et al. 2013. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. mBio 4:e00281–13 [Google Scholar]
  134. Typas A, Banzhaf M, Gross CA, Vollmer W. 134.  2012. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10:123–36 [Google Scholar]
  135. Typas A, Banzhaf M, van den Berg van Saparoea B, Verheul J, Biboy J. 135.  et al. 2010. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143:1097–109 [Google Scholar]
  136. Uehara T, Parzych KR, Dinh T, Bernhardt TG. 136.  2010. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–22 [Google Scholar]
  137. Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G. 137.  et al. 2014. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. PNAS 111:E1025–34 [Google Scholar]
  138. van Ooij C, Losick R. 138.  2003. Subcellular localization of a small sporulation protein in Bacillus subtilis. J. Bacteriol. 185:1391–98 [Google Scholar]
  139. van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS. 139.  et al. 2011. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. PNAS 108:15822–27 [Google Scholar]
  140. Vanounou S, Parola AH, Fishov I. 140.  2003. Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene-labelled phospholipids. Mol. Microbiol. 49:1067–79 [Google Scholar]
  141. Vanounou S, Pines D, Pines E, Parola AH, Fishov I. 141.  2002. Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem. Photobiol. 76:1–11 [Google Scholar]
  142. Vereb G, Szollosi J, Matko J, Nagy P, Farkas T. 142.  et al. 2003. Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. PNAS 100:8053–58 [Google Scholar]
  143. Wasnik V, Wingreen NS, Mukhopadhyay R. 143.  2015. Modeling curvature-dependent subcellular localization of the small sporulation protein SpoVM in Bacillus subtilis. PLOS ONE 10:e0111971 [Google Scholar]
  144. Welby M, Poquet Y, Tocanne JF. 144.  1996. The spatial distribution of phospholipids and glycolipids in the membrane of the bacterium Micrococcus luteus varies during the cell cycle. FEBS Lett 384:107–11 [Google Scholar]
  145. Whited AM, Johs A. 145.  2015. The interactions of peripheral membrane proteins with biological membranes. Chem. Phys. Lipids 192:51–59 [Google Scholar]
  146. Yao J, Rock CO. 146.  2015. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J. Biol. Chem. 290:5940–46 [Google Scholar]
  147. Yepes A, Schneider J, Mielich B, Koch G, García-Betancur JC. 147.  et al. 2012. The biofilm formation defect of a Bacillus subtilis flotillin-defective mutant involves the protease FtsH. Mol. Microbiol. 86:457–71 [Google Scholar]
  148. Zhao F, Zhang J, Liu YS, Li L, He YL. 148.  2011. Research advances on flotillins. Virol. J. 8:479 [Google Scholar]
  149. Zhao J, Wu J, Veatch SL. 149.  2013. Adhesion stabilizes robust lipid heterogeneity in supercritical membranes at physiological temperature. Biophys. J. 104:825–34 [Google Scholar]
  150. Zhou H, Lutkenhaus J. 150.  2003. Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer. J. Bacteriol. 185:4326–35 [Google Scholar]
  151. Zuckert WR. 151.  2014. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim. Biophys. Acta 1843:1509–16 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095630
Loading
/content/journals/10.1146/annurev-micro-102215-095630
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error