1932

Abstract

During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102521-014450
2022-09-08
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-102521-014450.html?itemId=/content/journals/10.1146/annurev-micro-102521-014450&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allen LM, Hodskinson MR, Sayers JR. 2009. Active site substitutions delineate distinct classes of eubacterial flap endonuclease. Biochem. J. 418:285–92
    [Google Scholar]
  2. 2.
    AlMalki FA, Flemming CS, Zhang J, Feng M, Sedelnikova SE et al. 2016. Direct observation of DNA threading in flap endonuclease complexes. Nat. Struct. Mol. Biol. 23:640–46
    [Google Scholar]
  3. 3.
    Beilhartz GL, Gotte M. 2010. HIV-1 ribonuclease H: structure, catalytic mechanism and inhibitors. Viruses 2:900–26
    [Google Scholar]
  4. 4.
    Boubakri H, de Septenville AL, Viguera E, Michel B. 2010. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29:145–57
    [Google Scholar]
  5. 5.
    Brochu J, Vlachos-Breton E, Sutherland S, Martel M, Drolet M. 2018. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli. PLOS Genet 14:e1007668
    [Google Scholar]
  6. 6.
    Bruning JG, Marians KJ. 2020. Replisome bypass of transcription complexes and R-loops. Nucleic Acids Res 48:10353–67
    [Google Scholar]
  7. 7.
    Cerritelli SM, Crouch RJ. 2009. Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–505
    [Google Scholar]
  8. 8.
    Chedin F, Hartono SR, Sanz LA, Vanoosthuyse V. 2021. Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J 40:e106394
    [Google Scholar]
  9. 9.
    Chon H, Matsumura H, Koga Y, Takano K, Kanaya S. 2006. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. J. Mol. Biol. 356:165–78
    [Google Scholar]
  10. 10.
    Costes A, Lecointe F, McGovern S, Quevillon-Cheruel S, Polard P. 2010. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLOS Genet 6:e1001238
    [Google Scholar]
  11. 11.
    Cronan GE, Kouzminova EA, Kuzminov A. 2019. Near-continuously synthesized leading strands in Escherichia coli are broken by ribonucleotide excision. PNAS 116:1251–60
    [Google Scholar]
  12. 12.
    De Septenville AL, Duigou S, Boubakri H, Michel B. 2012. Replication fork reversal after replication-transcription collision. PLOS Genet 8:e1002622
    [Google Scholar]
  13. 13.
    Deshpande AM, Newlon CS. 1996. DNA replication fork pause sites dependent on transcription. Science 272:1030–33
    [Google Scholar]
  14. 14.
    Dimude JU, Stockum A, Midgley-Smith SL, Upton AL, Foster HA et al. 2015. The consequences of replicating in the wrong orientation: bacterial chromosome duplication without an active replication origin. mBio 6:e01294–15
    [Google Scholar]
  15. 15.
    Drolet M, Brochu J. 2019. R-loop-dependent replication and genomic instability in bacteria. DNA Repair 84:102693
    [Google Scholar]
  16. 16.
    Drolet M, Phoenix P, Menzel R, Masse E, Liu LF, Crouch RJ. 1995. Overexpression of RNase H partially complements the growth defect of an Escherichia coli ΔtopA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. PNAS 92:3526–30
    [Google Scholar]
  17. 17.
    Duigou S, Ehrlich SD, Noirot P, Noirot-Gros MF. 2005. DNA polymerase I acts in translesion synthesis mediated by the Y-polymerases in Bacillus subtilis. Mol. Microbiol. 57:678–90
    [Google Scholar]
  18. 18.
    Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. 2011. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146:533–43
    [Google Scholar]
  19. 19.
    Fijalkowska IJ, Jonczyk P, Tkaczyk MM, Bialoskorska M, Schaaper RM. 1998. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. PNAS 95:10020–25
    [Google Scholar]
  20. 20.
    Foster PL, Lee H, Popodi E, Townes JP, Tang H. 2015. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. PNAS 112:E5990–99
    [Google Scholar]
  21. 21.
    Foster PL, Niccum BA, Lee H. 2021. DNA replication-transcription conflicts do not significantly contribute to spontaneous mutations due to replication errors in Escherichia coli. mBio 12:e02503–21
    [Google Scholar]
  22. 22.
    Foster PL, Niccum BA, Popodi E, Townes JP, Lee H et al. 2018. Determinants of base-pair substitution patterns revealed by whole-genome sequencing of DNA mismatch repair defective Escherichia coli. Genetics 209:1029–42
    [Google Scholar]
  23. 23.
    French S. 1992. Consequences of replication fork movement through transcription units in vivo. Science 258:1362–65
    [Google Scholar]
  24. 24.
    Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. 2006. DNA Repair and Mutagenesis. Washington, DC: Am. Soc. Microbiol. , 2nd ed..
    [Google Scholar]
  25. 25.
    Fukushima S, Itaya M, Kato H, Ogasawara N, Yoshikawa H. 2007. Reassessment of the in vivo functions of DNA polymerase I and RNase H in bacterial cell growth. J. Bacteriol. 189:8575–83
    [Google Scholar]
  26. 26.
    Gan W, Guan Z, Liu J, Gui T, Shen K et al. 2011. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25:2041–56
    [Google Scholar]
  27. 27.
    Guy CP, Atkinson J, Gupta MK, Mahdi AA, Gwynn EJ et al. 2009. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol. Cell 36:654–66
    [Google Scholar]
  28. 28.
    Heller RC, Marians KJ. 2006. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–62
    [Google Scholar]
  29. 29.
    Hernandez-Tamayo R, Oviedo-Bocanegra LM, Fritz G, Graumann PL 2019. Symmetric activity of DNA polymerases at and recruitment of exonuclease ExoR and of PolA to the Bacillus subtilis replication forks. Nucleic Acids Res 47:8521–36
    [Google Scholar]
  30. 30.
    Hong X, Cadwell GW, Kogoma T. 1995. Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J 14:2385–92
    [Google Scholar]
  31. 31.
    Hyjek M, Figiel M, Nowotny M. 2019. RNases H: structure and mechanism. DNA Repair 84:102672
    [Google Scholar]
  32. 32.
    Kaguni JM. 2006. DnaA: controlling the initiation of bacterial DNA replication and more. Annu. Rev. Microbiol. 60:351–75
    [Google Scholar]
  33. 33.
    Kaguni JM. 2011. Replication initiation at the Escherichia coli chromosomal origin. Curr. Opin. Chem. Biol. 15:5606–13
    [Google Scholar]
  34. 34.
    Kanaya S, Crouch RJ. 1983. DNA sequence of the gene coding for Escherichia coli ribonuclease H. J. Biol. Chem. 258:1276–81
    [Google Scholar]
  35. 35.
    Kanaya S, Ikehara M. 1995. Functions and structures of ribonuclease H enzymes. Subcell. Biochem. 24:377–422
    [Google Scholar]
  36. 36.
    Keller W, Crouch R. 1972. Degradation of DNA RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin. PNAS 69:3360–64
    [Google Scholar]
  37. 37.
    Kitani T, Yoda K, Ogawa T, Okazaki T. 1985. Evidence that discontinuous DNA replication in Escherichia coli is primed by approximately 10 to 12 residues of RNA starting with a purine. J. Mol. Biol. 184:45–52
    [Google Scholar]
  38. 38.
    Kochiwa H, Tomita M, Kanai A. 2007. Evolution of ribonuclease H genes in prokaryotes to avoid inheritance of redundant genes. BMC Evol. Biol. 7:128
    [Google Scholar]
  39. 39.
    Kogoma T. 1986. RNase H-defective mutants of Escherichia coli. J. Bacteriol. 166:361–63
    [Google Scholar]
  40. 40.
    Kogoma T. 1994. Escherichia coli RNA polymerase mutants that enhance or diminish the SOS response constitutively expressed in the absence of RNase HI activity. J. Bacteriol. 176:1521–23
    [Google Scholar]
  41. 41.
    Kogoma T. 1997. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61:212–38
    [Google Scholar]
  42. 42.
    Kogoma T, Hong X, Cadwell GW, Barnard KG, Asai T. 1993. Requirement of homologous recombination functions for viability of the Escherichia coli cell that lacks RNase HI and exonuclease V activities. Biochimie 75:89–99
    [Google Scholar]
  43. 43.
    Kornberg A, Baker TA. 1992. DNA Replication New York: W. H. Freeman
    [Google Scholar]
  44. 44.
    Kouzminova EA, Kadyrov FF, Kuzminov A. 2017. RNase HII saves rnhA mutant Escherichia coli from R-loop-associated chromosomal fragmentation. J. Mol. Biol. 429:2873–94
    [Google Scholar]
  45. 45.
    Lai L, Yokota H, Hung LW, Kim R, Kim SH 2000. Crystal structure of archaeal RNase HII: a homologue of human major RNase H. Structure 8:897–904
    [Google Scholar]
  46. 46.
    Lang KS, Hall AN, Merrikh CN, Ragheb M, Tabakh H et al. 2017. Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170:787–99.e18
    [Google Scholar]
  47. 47.
    Lang KS, Merrikh H. 2018. The clash of macromolecular titans: replication-transcription conflicts in bacteria. Annu. Rev. Microbiol. 72:71–88
    [Google Scholar]
  48. 48.
    Lecointe F, Serena C, Velten M, Costes A, McGovern S et al. 2007. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J 26:4239–51
    [Google Scholar]
  49. 49.
    Lee H, Popodi E, Tang H, Foster PL. 2012. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. PNAS 109:E2774–83
    [Google Scholar]
  50. 50.
    Leela JK, Raghunathan N, Gowrishankar J. 2021. Topoisomerase I essentiality, DnaA-independent chromosomal replication, and transcription-replication conflict in Escherichia coli. J. Bacteriol. 203:e0019521
    [Google Scholar]
  51. 51.
    Leela JK, Syeda AH, Anupama K, Gowrishankar J. 2013. Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. PNAS 110:258–63
    [Google Scholar]
  52. 52.
    Lin Y, Dent SY, Wilson JH, Wells RD, Napierala M. 2010. R loops stimulate genetic instability of CTG.CAG repeats. PNAS 107:692–97
    [Google Scholar]
  53. 53.
    Long H, Sung W, Miller SF, Ackerman MS, Doak TG, Lynch M. 2014. Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deficient Pseudomonas fluorescens ATCC948. Genome Biol. Evol. 7:262–71
    [Google Scholar]
  54. 54.
    Lu Z, Liang R, Liu X, Hou J, Liu J. 2012. RNase HIII from Chlamydophila pneumoniae can efficiently cleave double-stranded DNA carrying a chimeric ribonucleotide in the presence of manganese. Mol. Microbiol. 83:1080–93
    [Google Scholar]
  55. 55.
    Lundquist RC, Olivera BM. 1982. Transient generation of displaced single-stranded DNA during nick translation. Cell 31:53–60
    [Google Scholar]
  56. 56.
    Lyamichev V, Brow MA, Dahlberg JE. 1993. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260:778–83
    [Google Scholar]
  57. 57.
    Lynch M, Ackerman MS, Gout JF, Long H, Sung W et al. 2016. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17:704–14
    [Google Scholar]
  58. 58.
    Maduike NZ, Tehranchi AK, Wang JD, Kreuzer KN. 2014. Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics. Mol. Microbiol. 91:39–56
    [Google Scholar]
  59. 59.
    Maslowska KH, Makiela-Dzbenska K, Mo JY, Fijalkowska IJ, Schaaper RM. 2018. High-accuracy lagging-strand DNA replication mediated by DNA polymerase dissociation. PNAS 115:4212–17
    [Google Scholar]
  60. 60.
    Mellon I, Hanawalt PC. 1989. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342:95–98
    [Google Scholar]
  61. 61.
    Merrikh H, Machon C, Grainger WH, Grossman AD, Soultanas P. 2010. Co-directional replication-transcription conflicts lead to replication restart. Nature 470:554–57
    [Google Scholar]
  62. 62.
    Merrikh H, Zhang Y, Grossman AD, Wang JD. 2010. Replication-transcription conflicts in bacteria. Nat. Rev. Microbiol. 10:7449–58
    [Google Scholar]
  63. 63.
    Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ et al. 2015. An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. PNAS 112:E1096–105
    [Google Scholar]
  64. 64.
    Mirkin EV, Mirkin SM. 2005. Mechanisms of transcription-replication collisions in bacteria. Mol. Cell. Biol. 25:888–95
    [Google Scholar]
  65. 65.
    Miyashita S, Tadokoro T, Angkawidjaja C, You DJ, Koga Y et al. 2011. Identification of the substrate binding site in the N-terminal TBP-like domain of RNase H3. FEBS Lett 585:2313–17
    [Google Scholar]
  66. 66.
    Myka KK, Kusters K, Washburn R, Gottesman ME. 2019. DksA-RNA polymerase interactions support new origin formation and DNA repair in Escherichia coli. Mol. Microbiol. 111:1382–97
    [Google Scholar]
  67. 67.
    Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundstrom EB et al. 2010. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. PNAS 107:4949–54
    [Google Scholar]
  68. 68.
    Nowotny M. 2009. Retroviral integrase superfamily: the structural perspective. EMBO Rep 10:144–51
    [Google Scholar]
  69. 69.
    Nowotny M, Gaidamakov SA, Ghirlando R, Cerritelli SM, Crouch RJ, Yang W 2007. Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription. Mol. Cell 28:264–76
    [Google Scholar]
  70. 70.
    Nudler E. 2009. RNA polymerase active center: the molecular engine of transcription. Annu. Rev. Biochem. 78:335–61
    [Google Scholar]
  71. 71.
    Nye TM, McLean EK, Burrage AM, Dennison DD, Kearns DB, Simmons LA. 2021. RnhP is a plasmid-borne RNase HI that contributes to genome maintenance in the ancestral strain Bacillus subtilis NCIB 3610. Mol. Microbiol. 115:99–115
    [Google Scholar]
  72. 72.
    Ogawa T, Okazaki T. 1984. Function of RNase H in DNA replication revealed by RNase H defective mutants of Escherichia coli. Mol. Gen. Genet. 193:231–37
    [Google Scholar]
  73. 73.
    Ohtani N, Haruki M, Morikawa M, Crouch RJ, Itaya M, Kanaya S. 1999. Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families. Biochemistry 38:605–18
    [Google Scholar]
  74. 74.
    Ohtani N, Haruki M, Morikawa M, Kanaya S. 1999. Molecular diversities of RNases H. J. Biosci. Bioeng. 88:12–19
    [Google Scholar]
  75. 75.
    Ohtani N, Tomita M, Itaya M. 2008. Junction ribonuclease activity specified in RNases HII/2. FEBS J 275:5444–55
    [Google Scholar]
  76. 76.
    Ohtani N, Tomita M, Itaya M. 2008. Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex. Biochem. J. 412:517–26
    [Google Scholar]
  77. 77.
    Ordonez H, Uson ML, Shuman S. 2014. Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Res 42:11056–70
    [Google Scholar]
  78. 78.
    Patlan AG, Corona SU, Ayala-Garcia VM, Pedraza-Reyes M. 2018. Non-canonical processing of DNA photodimers with Bacillus subtilis UV-endonuclease YwjD, 5′→3′ exonuclease YpcP and low-fidelity DNA polymerases YqjH and YqjW. DNA Repair 70:1–9
    [Google Scholar]
  79. 79.
    Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 2013. Accelerated gene evolution through replication-transcription conflicts. Nature 495:512–15
    [Google Scholar]
  80. 80.
    Petzold C, Marceau AH, Miller KH, Marqusee S, Keck JL. 2015. Interaction with single-stranded DNA-binding protein stimulates Escherichia coli ribonuclease HI enzymatic activity. J. Biol. Chem. 290:14626–36
    [Google Scholar]
  81. 81.
    Pohl TJ, Zakian VA. 2019. Pif1 family DNA helicases: a helpmate to RNase H?. DNA Repair 84:102633
    [Google Scholar]
  82. 82.
    Pomerantz RT, O'Donnell M. 2008. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456:762–66
    [Google Scholar]
  83. 83.
    Portman JR, Brouwer GM, Bollins J, Savery NJ, Strick TR. 2021. Cotranscriptional R-loop formation by Mfd involves topological partitioning of DNA. PNAS 118:e2019630118
    [Google Scholar]
  84. 84.
    Potenski CJ, Epshtein A, Bianco C, Klein HL. 2019. Genome instability consequences of RNase H2 Aicardi-Goutières syndrome alleles. DNA Repair 84:102614
    [Google Scholar]
  85. 85.
    Raghunathan N, Kapshikar RM, Leela JK, Mallikarjun J, Bouloc P, Gowrishankar J. 2018. Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli. Nucleic Acids Res 46:3400–11
    [Google Scholar]
  86. 86.
    Randall JR, Hirst WG, Simmons LA. 2017. Substrate specificity for bacterial RNase HII and HIII is influenced by metal availability. J. Bacteriol. 200:4e00401–17
    [Google Scholar]
  87. 87.
    Randall JR, Nye TM, Wozniak KJ, Simmons LA. 2019. RNase HIII is important for Okazaki fragment processing in Bacillus subtilis. J. Bacteriol. 201:7e00686–18
    [Google Scholar]
  88. 88.
    Rocha EPC. 2004. The replication-related organization of bacterial genomes. Microbiology 150:1609–27
    [Google Scholar]
  89. 89.
    Rowen L, Kornberg A. 1978. Primase, the dnaG protein of Escherichia coli: an enzyme which starts DNA chains. J. Biol. Chem. 253:758–64
    [Google Scholar]
  90. 90.
    Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD. 2016. The nature of mutations induced by replication-transcription collisions. Nature 535:178–81
    [Google Scholar]
  91. 91.
    Schroeder JW, Hirst WG, Szewczyk GA, Simmons LA. 2016. The effect of local sequence context on mutational bias of genes encoded on the leading and lagging strands. Curr. Biol 26:692–97
    [Google Scholar]
  92. 92.
    Schroeder JW, Randall JR, Hirst WG, O'Donnell ME, Simmons LA 2017. Mutagenic cost of ribonucleotides in bacterial DNA. PNAS 114:11733–38
    [Google Scholar]
  93. 93.
    Schroeder JW, Randall JR, Matthews LA, Simmons LA. 2015. Ribonucleotides in bacterial DNA. Crit. Rev. Biochem. Mol. Biol. 50:181–93
    [Google Scholar]
  94. 94.
    Schroeder JW, Sankar TS, Wang JD, Simmons LA. 2020. The roles of replication-transcription conflict in mutagenesis and evolution of genome organization. PLOS Genet 16:e1008987
    [Google Scholar]
  95. 95.
    Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. 2008. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43:289–318
    [Google Scholar]
  96. 96.
    Shin JH, Kelman Z. 2006. The replicative helicases of bacteria, archaea, and eukarya can unwind RNA-DNA hybrid substrates. J. Biol. Chem. 281:26914–21
    [Google Scholar]
  97. 97.
    Smolka JA, Sanz LA, Hartono SR, Chedin F. 2021. Recognition of RNA by the S9.6 antibody creates pervasive artifacts when imaging RNA:DNA hybrids. J. Cell Biol. 220:e202004079
    [Google Scholar]
  98. 98.
    Sparks JL, Chon H, Cerritelli SM, Kunkel TA, Johansson E et al. 2012. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47:980–86
    [Google Scholar]
  99. 99.
    Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. 2010. Co-orientation of replication and transcription preserves genome integrity. PLOS Genet 6:e1000810
    [Google Scholar]
  100. 100.
    Sung W, Ackerman MS, Gout JF, Miller SF, Williams E et al. 2015. Asymmetric context-dependent mutation patterns revealed through mutation-accumulation experiments. Mol. Biol. Evol. 32:1672–83
    [Google Scholar]
  101. 101.
    Tadokoro T, Kanaya S. 2009. Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. FEBS J 276:1482–93
    [Google Scholar]
  102. 102.
    Tannous E, Kanaya E, Kanaya S. 2015. Role of RNase H1 in DNA repair: removal of single ribonucleotide misincorporated into DNA in collaboration with RNase H2. Sci. Rep. 5:9969
    [Google Scholar]
  103. 103.
    Tehranchi AK, Blankschien MD, Zhang Y, Halliday JA, Srivatsan A et al. 2010. The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. Cell 141:595–605
    [Google Scholar]
  104. 104.
    Urrutia-Irazabal I, Ault JR, Sobott F, Savery NJ, Dillingham MS 2021. Analysis of the PcrA-RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops. eLife 10:e68829
    [Google Scholar]
  105. 105.
    Uson ML, Carl A, Goldgur Y, Shuman S. 2018. Crystal structure and mutational analysis of Mycobacterium smegmatis FenA highlight active site amino acids and three metal ions essential for flap endonuclease and 5′ exonuclease activities. Nucleic Acids Res 46:4164–75
    [Google Scholar]
  106. 106.
    Usongo V, Drolet M. 2014. Roles of type 1A topoisomerases in genome maintenance in Escherichia coli. PLOS Genet 10:e1004543
    [Google Scholar]
  107. 107.
    Usongo V, Martel M, Balleydier A, Drolet M. 2016. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity. DNA Repair 40:1–17
    [Google Scholar]
  108. 108.
    Vaisman A, McDonald JP, Huston D, Kuban W, Liu L et al. 2013. Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair. PLOS Genet 9:e1003878
    [Google Scholar]
  109. 109.
    Vaisman A, McDonald JP, Noll S, Huston D, Loeb G et al. 2014. Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli. Mutat. Res. Fundam. Mol. Mech. Mutagen. 761:21–33
    [Google Scholar]
  110. 110.
    Vaisman A, Woodgate R. 2018. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit. Rev. Biochem. Mol. Biol. 53:382–402
    [Google Scholar]
  111. 111.
    Wang JD, Berkmen MB, Grossman AD. 2007. Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. PNAS 104:5608–13
    [Google Scholar]
  112. 112.
    Williams JS, Clausen AR, Nick McElhinny SA, Watts BE, Johansson E, Kunkel TA 2012. Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ε. DNA Repair 11:8649–56
    [Google Scholar]
  113. 113.
    Williams JS, Kunkel TA. 2014. Ribonucleotides in DNA: origins, repair and consequences. DNA Repair 19:27–37
    [Google Scholar]
  114. 114.
    Williams JS, Lujan SA, Zhou ZX, Burkholder AB, Clark AB et al. 2019. Genome-wide mutagenesis resulting from topoisomerase 1-processing of unrepaired ribonucleotides in DNA. DNA Repair 84:102641
    [Google Scholar]
  115. 115.
    Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ. 2013. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 4:2115
    [Google Scholar]
  116. 116.
    Wolak C, Ma HJ, Soubry N, Sandler SJ, Reyes-Lamothe R, Keck JL. 2020. Interaction with single-stranded DNA-binding protein localizes ribonuclease HI to DNA replication forks and facilitates R-loop removal. Mol. Microbiol. 114:495–509
    [Google Scholar]
  117. 117.
    Xu Y, Potapova O, Leschziner AE, Grindley ND, Joyce CM. 2001. Contacts between the 5′ nuclease of DNA polymerase I and its DNA substrate. J. Biol. Chem. 276:30167–77
    [Google Scholar]
  118. 118.
    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 12:7–8
    [Google Scholar]
  119. 119.
    Yao NY, Schroeder JW, Yurieva O, Simmons LA, O'Donnell ME. 2013. Cost of rNTP/dNTP pool imbalance at the replication fork. PNAS 110:12942–47
    [Google Scholar]
  120. 120.
    Yoshiyama K, Higuchi K, Matsumura H, Maki H. 2001. Directionality of DNA replication fork movement strongly affects the generation of spontaneous mutations in Escherichia coli. J. Mol. Biol. 307:1195–206
    [Google Scholar]
  121. 121.
    Yuan Q, McHenry CS. 2009. Strand displacement by DNA polymerase III occurs through a Τ-Ψ-Χ link to single-stranded DNA-binding protein coating the lagging strand template. J. Biol. Chem. 284:31672–79
    [Google Scholar]
  122. 122.
    Zhou ZX, Williams JS, Lujan SA, Kunkel TA. 2021. Ribonucleotide incorporation into DNA during DNA replication and its consequences. Crit. Rev. Biochem. Mol. Biol. 56:109–24
    [Google Scholar]
/content/journals/10.1146/annurev-micro-102521-014450
Loading
/content/journals/10.1146/annurev-micro-102521-014450
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error