1932

Abstract

My scientific career has resulted from key decisions and reorientations, sometimes taken rapidly but not always, guided by discussions or collaborations with amazing individuals from whom I learnt a lot scientifically and humanly. I had never anticipated that I would accomplish so much in what appeared as terra incognita when I started to interrogate the mechanisms underlying the virulence of the bacterium . All this has been possible thanks to a number of talented team members who ultimately became friends.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-110422-112841
2023-09-15
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-110422-112841.html?itemId=/content/journals/10.1146/annurev-micro-110422-112841&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aiba H, Fujimoto S, Ozaki N. 1982. Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucleic Acids Res. 10:1345–61
    [Google Scholar]
  2. 2.
    Archambaud C, Nahori MA, Pizarro-Cerda J, Cossart P, Dussurget O. 2006. Control of Listeria superoxide dismutase by phosphorylation. J. Biol. Chem. 281:31812–22
    [Google Scholar]
  3. 3.
    Archambaud C, Nahori MA, Soubigou G, Bécavin C, Laval L et al. 2012. Impact of lactobacilli on orally acquired listeriosis. PNAS 109:16684–89
    [Google Scholar]
  4. 4.
    Archambaud C, Sismeiro O, Toedling J, Soubigou G, Bécavin C et al. 2013. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. mBio 4:e00707–13
    [Google Scholar]
  5. 5.
    Bernardini ML, Mounier J, d'Hautevill H, Coquis-Rondon M, Sansonetti PJ. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. PNAS 86:3867–71
    [Google Scholar]
  6. 6.
    Bierne H, Cossart P. 2012. When bacteria target the nucleus: the emerging family of nucleomodulins. Cell. Microbiol. 14:622–33
    [Google Scholar]
  7. 7.
    Bierne H, Hamon M, Cossart P. 2012. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med. 2:a010272
    [Google Scholar]
  8. 8.
    Bierne H, Mazmanian SK, Trost M, Pucciarelli MG, Liu G et al. 2002. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol. Microbiol. 43:869–81
    [Google Scholar]
  9. 9.
    Bonazzi M, Vasudevan L, Mallet A, Sachse M, Sartori A et al. 2011. Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. J. Cell Biol. 195:525–36
    [Google Scholar]
  10. 10.
    Bonazzi M, Veiga E, Pizarro-Cerdá J, Cossart P. 2008. Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes. Cell. Microbiol. 10:2208–22
    [Google Scholar]
  11. 11.
    Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P. 1997. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25:285–94
    [Google Scholar]
  12. 12.
    Braun L, Ghebrehiwet B, Cossart P. 2000. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19:1458–66
    [Google Scholar]
  13. 13.
    Cabanes D, Dussurget O, Dehoux P, Cossart P. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 51:1601–14
    [Google Scholar]
  14. 14.
    Cabanes D, Sousa S, Cebria A, Lecuit M, Garcia del Portillo F, Cossart P. 2005. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J. 24:2827–38
    [Google Scholar]
  15. 15.
    Carvalho F, Spier A, Chaze T, Matondo M, Cossart P, Stavru F. 2020. Listeria monocytogenes exploits mitochondrial contact site and cristae organizing system complex subunit Mic10 to promote mitochondrial fragmentation and cellular infection. mBio 11:e03171–19
    [Google Scholar]
  16. 16.
    Chenevert J, Mengaud J, Gormley E, Cossart P. 1989. A DNA probe specific for L. monocytogenes in the genus Listeria. Int. J. Food Microbiol. 8:317–19
    [Google Scholar]
  17. 17.
    Cossart P. 2011. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes. PNAS 108:19484–91
    [Google Scholar]
  18. 18.
    Cossart P, Boquet P, Normark S, Rappuoli R. 1996. Cellular microbiology emerging. Science 271:315–16
    [Google Scholar]
  19. 19.
    Cossart P, Boquet P, Normark S, Rappuoli R. 2000. Cellular Microbiology Washington, DC: ASM
  20. 20.
    Cossart P, Gicquel-Sanzey B. 1982. Cloning and sequence of the crp gene of Escherichia coli K 12. Nucleic Acids Res. 10:1363–78
    [Google Scholar]
  21. 21.
    Cossart P, Katinka M, Yaniv M, Girons IS, Cohen GN. 1979. Construction and expression of a hybrid plasmid containing the Escherichia coli thrA and thrB genes. Mol. Gen. Genet. 175:39–44
    [Google Scholar]
  22. 22.
    Cossart P, Kolter R, Lemaitre B, Typas A. 2023. The New Microbiology: an international lecture course on the island of Spetses. microLife 4:uqac026
    [Google Scholar]
  23. 23.
    Cudmore S, Cossart P, Griffiths G, Way M 1995. Actin-based motility of vaccinia virus. Nature 378::636–38
    [Google Scholar]
  24. 24.
    Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N et al. 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352:aad9822
    [Google Scholar]
  25. 25.
    Debarbouille M, Cossart P, Raibaud O. 1982. A DNA sequence containing the control sites for gene malT and for the malPQ operon. Mol. Gen. Genet. 185:88–92
    [Google Scholar]
  26. 26.
    Dehoux P, Cossart P. 1995. Homologies between salmolysin and some bacterial regulatory proteins. Mol. Microbiol. 15:591–92
    [Google Scholar]
  27. 27.
    Disson O, Grayo S, Huillet E, Nikitas G, Langa-Vives F et al. 2008. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–18
    [Google Scholar]
  28. 28.
    Dortet L, Mostowy S, Louaka AS, Gouin E, Nahori MA et al. 2011. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLOS Pathog. 7:e1002168
    [Google Scholar]
  29. 29.
    Dramsi S, Biswas I, Maguin E, Braun L, Mastroeni P, Cossart P. 1995. Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol. Microbiol. 16:251–61
    [Google Scholar]
  30. 30.
    Dramsi S, Dehoux P, Lebrun M, Goossens PL, Cossart P. 1997. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65:1615–25
    [Google Scholar]
  31. 31.
    Dussurget O, Bierne H, Cossart P. 2014. The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Front. Cell. Infect. Microbiol. 4:50
    [Google Scholar]
  32. 32.
    Dussurget O, Cabanes D, Dehoux P, Lecuit M, Eur. Listeria Genome Consort., et al. 2002. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45:1095–106
    [Google Scholar]
  33. 33.
    Duval M, Dar D, Carvalho F, Rocha EP, Sorek R, Cossart P. 2018. HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. PNAS 115:13359–64
    [Google Scholar]
  34. 34.
    Ebright RH, Cossart P, Gicquel-Sanzey B, Beckwith J. 1984. Mutations that alter the DNA sequence specificity of the catabolite gene activator protein of E. coli. Nature 311:232–35
    [Google Scholar]
  35. 35.
    Eskandarian HA, Impens F, Nahori MA, Soubigou G, Coppée JY et al. 2013. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341:238858
    [Google Scholar]
  36. 36.
    Fischetti VA, Pancholi V, Schneewind O. 1990. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram positive cocci. Mol. Microbiol. 4:1603–5
    [Google Scholar]
  37. 37.
    Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P. 1991. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–41
    [Google Scholar]
  38. 38.
    Gicquel-Sanzey B, Cossart P. 1982. Homologies between different procaryotic DNA-binding regulatory proteins and between their sites of action. EMBO J. 1:591–95
    [Google Scholar]
  39. 39.
    Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A et al. 2001. Comparative genomics of Listeria species. Science 294:849–52
    [Google Scholar]
  40. 40.
    Gouin E, Adib-Conquy M, Balestrino D, Nahori MA, Villiers V et al. 2010. The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the IκB kinase subunit IKKα. PNAS 107:17333–38
    [Google Scholar]
  41. 41.
    Gouin E, Balestrino D, Rasid O, Nahori MA, Villiers V et al. 2019. Ubiquitination of Listeria virulence factor Inlc contributes to the host response to infection. mBio 10:e02778–19
    [Google Scholar]
  42. 42.
    Gouin E, Egile C, Dehoux P, Villiers V, Adams J et al. 2004. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457–61
    [Google Scholar]
  43. 43.
    Gouin E, Gantelet H, Egile C, Lasa I, Ohayon H et al. 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. . J. Cell Sci. 112:1697–708
    [Google Scholar]
  44. 44.
    Gouin E, Welch MD, Cossart P. 2005. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8:35–45
    [Google Scholar]
  45. 45.
    Hamon MA, Batsché E, Régnault B, Tham TN, Seveau S et al. 2007. Histone modifications induced by a family of bacterial toxins. PNAS 104:13467–72
    [Google Scholar]
  46. 46.
    Heinzen RA, Hayes SF, Peacock MG, Hackstadt T. 1993. Directional actin polymerisation associated with spotted fever group Rickettsia infection of Vero cells. Infect. Immun. 61:1926–35
    [Google Scholar]
  47. 47.
    Impens F, Radoshevich L, Cossart P, Ribet D. 2014. Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. PNAS 111:12432–37
    [Google Scholar]
  48. 48.
    Impens F, Rolhion N, Radoshevich L, Bécavin C, Duval M et al. 2017. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nat. Microbiol. 2:17005 Erratum 2018. Nat. Microbiol. 3:8962
    [Google Scholar]
  49. 49.
    Ireton K, Payrastre B, Chap H, Ogawa W, Sakaue H et al. 1996. A role for phosphoinositide 3-kinase in bacterial invasion. Science 274:780–82
    [Google Scholar]
  50. 50.
    Isberg RR, Falkow S. 1985. A single genetic locus encoded by Yersinia tuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317:262–64
    [Google Scholar]
  51. 51.
    Jabs S, Biton A, Bécavin C, Nahori MA, Ghozlane A et al. 2020. Impact of the gut microbiota on the m6A epitranscriptome of mouse cecum and liver. Nat. Comm. 11:1344
    [Google Scholar]
  52. 52.
    Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–61
    [Google Scholar]
  53. 53.
    Katinka M, Cossart P, Sibilli L, Saint-Girons I, Chalvignac MA et al. 1980. Nucleotide sequence of the thrA gene of Escherichia coli. PNAS 77:5730–33
    [Google Scholar]
  54. 54.
    Khelef N, Lecuit M, Bierne H, Cossart P. 2006. Species specificity of the Listeria monocytogenes InlB protein. Cell. Microbiol. 8:457–70
    [Google Scholar]
  55. 55.
    Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P. 1992. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–31
    [Google Scholar]
  56. 56.
    Kocks C, Hellio R, Gounon P, Ohayon H, Cossart P. 1993. Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J. Cell Sci. 105:699–710
    [Google Scholar]
  57. 57.
    Kocks C, Marchand JB, Gouin E, d'Hauteville H, Sansonetti PJ et al. 1995. The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol. Microbiol. 18:413–23
    [Google Scholar]
  58. 58.
    Kühbacher A, Dambournet D, Echard A, Cossart P, Pizarro-Cerdá J. 2012. Phosphatidylinositol 5-phosphatase oculocerebrorenal syndrome of Lowe protein (OCRL) controls actin dynamics during early steps of Listeria monocytogenes infection. J. Biol. Chem. 287:13128–36
    [Google Scholar]
  59. 59.
    Kühbacher A, Emmenlauer M, Rämo P, Kafai N, Dehio C et al. 2015. Genome-wide siRNA screen identifies complementary signaling pathways involved in Listeria infection and reveals different actin nucleation mechanisms during Listeria cell invasion and actin comet tail formation. mBio 6:e00598–15
    [Google Scholar]
  60. 60.
    Lasa I, David V, Gouin E, Marchand JB, Cossart P. 1995. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes: The central proline-rich region acts as a stimulator. Mol. Microbiol. 18:425–36
    [Google Scholar]
  61. 61.
    Lasa I, Gouin E, Goethals M, Vancompernolle K, David V et al. 1997. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 16:1531–40
    [Google Scholar]
  62. 62.
    Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN et al. 2011. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 331:1319–21
    [Google Scholar]
  63. 63.
    Lebrun M, Mengaud J, Ohayon H, Nato F, Cossart P. 1996. Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Mol. Microbiol. 21:579–92
    [Google Scholar]
  64. 64.
    Lecuit M, Cossart P. 1998. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement. EMBO J. 17:3797–806
    [Google Scholar]
  65. 65.
    Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18:3956–63
    [Google Scholar]
  66. 66.
    Lecuit M, Nelson DM, Smith SD, Khun H, Huerre M et al. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. PNAS 101::6152–57
    [Google Scholar]
  67. 67.
    Lecuit M, Sonnenburg JL, Cossart P, Gordon JI. 2007. Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model. J. Biol. Chem. 282:15065–72
    [Google Scholar]
  68. 68.
    Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P et al. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–25
    [Google Scholar]
  69. 69.
    Leimeister-Wächter M, Haffner C, Domann E, Goebel W, Chakraborty T. 1990. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. PNAS 87:8336–40
    [Google Scholar]
  70. 70.
    Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T et al. 2009. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139:770–79
    [Google Scholar]
  71. 71.
    Makino S, Sasakawa C, Kamata K, Kurata T, Yoshikawa M. 1986. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in Shigella flexneri 2A. Cell 46:551–55
    [Google Scholar]
  72. 72.
    Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E et al. 2005. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 57:1367–80
    [Google Scholar]
  73. 73.
    Martinez JJ, Cossart P. 2004. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J. Cell Sci. 117:5097–106
    [Google Scholar]
  74. 74.
    Martinez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P. 2005. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123:1013–23
    [Google Scholar]
  75. 75.
    Mazodier P, Cossart P, Giraud E, Gasser F 1985. Completion of the nucleotide sequence of the central region of Tn 5 confirms the presence of three resistance genes. Nucleic Acids Res. 13:195–205
    [Google Scholar]
  76. 76.
    Mellin JR, Koutero M, Dar D, Nahori MA, Sorek R, Cossart P. 2014. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science 345:940–43
    [Google Scholar]
  77. 77.
    Mellin JR, Tiensuu T, Bécavin C, Gouin E, Johansson J, Cossart P. 2013. A riboswitch-regulated antisense RNA in Listeria monocytogenes. PNAS 110:13132–37
    [Google Scholar]
  78. 78.
    Mengaud J, Braun-Breton C, Cossart P. 1991. Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor?. Mol. Microbiol. 5:367–72
    [Google Scholar]
  79. 79.
    Mengaud J, Dramsi S, Gouin E, Vazquez-Boland JA, Milon G, Cossart P. 1991. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol. 5:2273–83
    [Google Scholar]
  80. 80.
    Mengaud J, Ohayon H, Gounon P, Mège RM, Cossart P. 1996. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–32
    [Google Scholar]
  81. 81.
    Mengaud J, Vicente MF, Chenevert J, Pereira JM, Geoffroy et al. 1988. Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect. Immun. 56:766–72
    [Google Scholar]
  82. 82.
    Mengaud J, Vicente MF, Cossart P. 1989. Transcriptional mapping and nucleotide sequence of the Listeria monocytogenes hlyA region reveal structural features that may be involved in regulation. Infect. Immun. 57::3695–701
    [Google Scholar]
  83. 83.
    Michel E, Cossart P. 1992. Physical map of the Listeria monocytogenes chromosome. J. Bacteriol. 174:7098–103
    [Google Scholar]
  84. 84.
    Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A et al. 2010. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8:433–44
    [Google Scholar]
  85. 85.
    Mostowy S, Cossart P. 2012. Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 13:183–94
    [Google Scholar]
  86. 86.
    Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. 2011. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J. Exp. Med. 208:2263–77
    [Google Scholar]
  87. 87.
    Pagliuso A, Tham TN, Allemand E, Robertin S, Dupuy B, et al. 2019. An RNA-binding protein secreted by a bacterial pathogen modulates RIG-I signaling. Cell Host Microbe 26:823–35
    [Google Scholar]
  88. 88.
    Personnic N, Brick S, Nahori MA, Toledo-Arana Nikitas G et al. 2010. The stress-induced virulence protein InlH controls interleukin-6 production during murine listeriosis. Infect. Immun. 78:1979–89
    [Google Scholar]
  89. 89.
    Pizarro-Cerdá J, Chorev DS, Geiger B, Cossart P. 2017. The diverse family of Arp2/3 complexes. Trends Cell Biol. 27:93–100
    [Google Scholar]
  90. 90.
    Pizarro-Cerdá J, Jonquières R, Gouin E, Vandekerckhove J, Garin J, Cossart P 2002. Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes. Cell. Microbiol. 4:101–15
    [Google Scholar]
  91. 91.
    Prokop A, Gouin E, Villiers V, Nahori MA, Vincentelli R et al. 2017. OrfX, a nucleomodulin required for Listeria monocytogenes virulence. mBio 8:e01550–17
    [Google Scholar]
  92. 92.
    Quereda JJ, Dussurget O, Nahori MA, Ghozlane A, Volant S et al. 2016. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. PNAS 113:5706–11
    [Google Scholar]
  93. 93.
    Quereda JJ, Nahori MA, Meza-Torres J, Sachse M, Titos-Jimenez P et al. 2017. Listeriolysin S is a streptolysin S-like virulence factor that targets exclusively prokaryotic cells in vivo. mBio 8:e00259–17
    [Google Scholar]
  94. 94.
    Rabajian T, Gavicherla B, Heisig M, Muller-Alltrock S, Goebel W et al. 2009. The bacterial factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. . Nat. Cell Biol. 11:1212–18
    [Google Scholar]
  95. 95.
    Radoshevich L, Cossart P. 2018. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 16:32–46
    [Google Scholar]
  96. 96.
    Radoshevich L, Impens F, Ribet D, Quereda JJ, Tham TN et al. 2015. ISG15 counteracts Listeria monocytogenes infection. eLife 4:e06848
    [Google Scholar]
  97. 97.
    Reed SCO, Lamason RL, Risca VI, Abernathy E, Welch MD. 2014. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr. Biol. 24:98–103
    [Google Scholar]
  98. 98.
    Renzoni A, Klarsfeld A, Dramsi S, Cossart P. 1997. Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect. Immun. 65:1515–18
    [Google Scholar]
  99. 99.
    Ribet D, Hamon M, Gouin E, Nahori MA, Impens F et al. 2010. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464:1192–95
    [Google Scholar]
  100. 100.
    Rolhion N, Chassaing B, Nahori MA, De Bodt J, Moura A et al. 2019. A Listeria monocytogenes bacteriocin can target the commensal Prevotella copri and modulate intestinal infection. Cell Host Microbe 26:691–701
    [Google Scholar]
  101. 101.
    Rudra P, Hurst-Hess KR, Cotton KL, Partida-Miranda A, Ghosh P. 2020. Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. PNAS 117:629–34
    [Google Scholar]
  102. 102.
    Sabet C, Lecuit M, Cabanes D, Cossart P, Bierne H. 2005. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect. Immun. 73:6912–22
    [Google Scholar]
  103. 103.
    Sabet C, Toledo-Arana A, Personnic N, Lecuit M, Dubrac S et al. 2008. The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect. Immun. 76:1368–78
    [Google Scholar]
  104. 104.
    Samba-Louaka A, Pereira JM, Nahori MA, Villiers V, Deriano L et al. 2014. Listeria monocytogenes dampens the DNA damage response. PLOS Pathog. 10:e1004470
    [Google Scholar]
  105. 105.
    Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P. 2013. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat. Rev. Microbiol. 11:75–82
    [Google Scholar]
  106. 106.
    Seveau S, Bierne H, Giroux S, Prévost MC, Cossart P. 2004. Role of lipid rafts in E-cadherin– and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells. J. Cell Biol. 166:743–53
    [Google Scholar]
  107. 107.
    Seveau S, Tham TN, Payrastre B, Hoppe AD, Swanson JA, Cossart P. 2007. A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cell Microbiol. 9:790–803
    [Google Scholar]
  108. 108.
    Sheehan B, Klarsfeld A, Ebright R, Cossart P. 1996. A single substitution in the putative helix-turn-helix motif of the pleiotropic activator PrfA attenuates Listeria monocytogenes virulence. Mol. Microbiol. 20:785–97
    [Google Scholar]
  109. 109.
    Shen Y, Naujokas M, Park M, Ireton K. 2000. InlB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–10
    [Google Scholar]
  110. 110.
    Sousa S, Cabanes D, Archambaud C, Colland F, Lemichez E et al. 2005. ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion. Nat. Cell Biol. 7:954–60
    [Google Scholar]
  111. 111.
    Spier A, Connor MG, Steiner T, Carvalho F, Cossart P et al. 2021. Mitochondrial respiration restricts Listeria monocytogenes infection by slowing down host cell receptor recycling. Cell Rep. 37:109989
    [Google Scholar]
  112. 112.
    Stavru F, Bouillaud F, Sartori A, Ricquier D, Cossart P. 2011.. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. PNAS 108:3612–17
    [Google Scholar]
  113. 113.
    Stavru F, Palmer AE, Wang C, Youle RJ, Cossart P. 2013. Atypical mitochondrial fission upon bacterial infection. PNAS 110:16003–8
    [Google Scholar]
  114. 114.
    Tilney LG, Portnoy DA. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109:1597–608
    [Google Scholar]
  115. 115.
    Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H et al. 2009. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–56
    [Google Scholar]
  116. 116.
    Vazquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C et al. 1992. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect. Immun. 60:219–30
    [Google Scholar]
  117. 117.
    Veiga E, Cossart P. 2005. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat. Cell Biol. 7:894–900
    [Google Scholar]
  118. 118.
    Veiga E, Guttman JA, Bonazzi M, Boucrot E, Toledo-Arana A et al. 2007. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe 2:340–51
    [Google Scholar]
  119. 119.
    Welch MD, Iwamatsu A, Mitchison TJ. 1997. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385:265–69
    [Google Scholar]
  120. 120.
    Williams AH, Redzej A, Rolhion N, Costa TR, Rifflet A et al. 2019. The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation. Nat. Commun. 10:13005
    [Google Scholar]
  121. 121.
    Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S et al. 2012. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol. Syst. Biol. 8:583
    [Google Scholar]
/content/journals/10.1146/annurev-micro-110422-112841
Loading
/content/journals/10.1146/annurev-micro-110422-112841
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error