1932

Abstract

In less than two decades, three deadly zoonotic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have emerged in humans, causing SARS, MERS, and coronavirus disease 2019 (COVID-19), respectively. The current COVID-19 pandemic poses an unprecedented crisis in health care and social and economic development. It reinforces the cruel fact that CoVs are constantly evolving, possessing the genetic malleability to become highly pathogenic in humans. In this review, we start with an overview of CoV diseases and the molecular virology of CoVs, focusing on similarities and differences between SARS-CoV-2 and its highly pathogenic as well as low-pathogenic counterparts. We then discuss mechanisms underlying pathogenesis and virus-host interactions of SARS-CoV-2 and other CoVs, emphasizing the host immune response. Finally, we summarize strategies adopted for the prevention and treatment of CoV diseases and discuss approaches to develop effective antivirals and vaccines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-110520-023212
2021-10-08
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-110520-023212.html?itemId=/content/journals/10.1146/annurev-micro-110520-023212&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP et al. 2018. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9:2e00221-18
    [Google Scholar]
  2. 2. 
    Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X et al. 2019. Small-molecule antiviral β-d-N4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J. Virol. 93:24e01348-19
    [Google Scholar]
  3. 3. 
    Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL et al. 2019. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat. Microbiol. 4:5789–99
    [Google Scholar]
  4. 4. 
    Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R et al. 2020. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 584:7821353–63
    [Google Scholar]
  5. 5. 
    Athmer J, Fehr AR, Grunewald ME, Qu W, Wheeler DL et al. 2018. Selective packaging in murine coronavirus promotes virulence by limiting type I interferon responses. mBio 9:3e00272-18
    [Google Scholar]
  6. 6. 
    Báez-Santos YM, Barraza SJ, Wilson MW, Agius MP, Mielech AM et al. 2014. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J. Med. Chem. 57:62393–412
    [Google Scholar]
  7. 7. 
    Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H et al. 2020. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370:6515eabd4585
    [Google Scholar]
  8. 8. 
    Baum A, Copin R, Ajithdoss D, Zhou A, Lanza K et al. 2020. REGN-COV2 antibody cocktail prevents and treats SARS-CoV-2 infection in rhesus macaques and hamsters. bioRxiv 2020.08.02.233320
  9. 9. 
    Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS et al. 2020. Remdesivir for the treatment of Covid-19—Final report. N. Engl. J. Med. 383:191813–26
    [Google Scholar]
  10. 10. 
    Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D et al. 2020. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181:51036–45.e9
    [Google Scholar]
  11. 11. 
    Braun J, Loyal L, Frentsch M, Wendisch D, Georg P et al. 2020. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 587:27074
    [Google Scholar]
  12. 12. 
    Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y et al. 2020. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 369:6504643–50
    [Google Scholar]
  13. 13. 
    Brownsword MJ, Doyle N, Brocard M, Locker N, Maier HJ. 2020. Infectious bronchitis virus regulates cellular stress granule signaling. Viruses 12:5536
    [Google Scholar]
  14. 14. 
    Cao X. 2020. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 20:5269–70
    [Google Scholar]
  15. 15. 
    Deleted in proof
  16. 16. 
    Chang C-Y, Liu HM, Chang M-F, Chang SC. 2020. Middle East respiratory syndrome coronavirus nucleocapsid protein suppresses type I and type III interferon induction by targeting RIG-I signaling. J. Virol. 94:13e00099-20
    [Google Scholar]
  17. 17. 
    Chen I-Y, Moriyama M, Chang M-F, Ichinohe T. 2019. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol. 10:50
    [Google Scholar]
  18. 18. 
    Chen Y, Cai H, Pan J'A, Xiang N, Tien P, Ahola T, Guo D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. PNAS 106:93484–89
    [Google Scholar]
  19. 19. 
    Chen Z, Wherry EJ. 2020. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 20:9529–36
    [Google Scholar]
  20. 20. 
    Chu H, Zhou J, Wong BH-Y, Li C, Chan JF-W et al. 2016. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J. Infect. Dis. 213:6904–14
    [Google Scholar]
  21. 21. 
    Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D et al. 2020. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38:970–79
    [Google Scholar]
  22. 22. 
    Comar CE, Goldstein SA, Li Y, Yount B, Baric RS, Weiss SR. 2019. Antagonism of dsRNA-induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection. mBio 10:2e00319-19
    [Google Scholar]
  23. 23. 
    Cong Y, Ulasli M, Schepers H, Mauthe M, V'kovski P et al. 2020. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J. Virol. 94:4e01925-19
    [Google Scholar]
  24. 24. 
    Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D et al. 2020. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell 183:96881.e7
    [Google Scholar]
  25. 25. 
    Cui J, Li F, Shi Z-L. 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17:3181–92
    [Google Scholar]
  26. 26. 
    Daffis S, Szretter KJ, Schriewer J, Li J, Youn S et al. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:7322452–56
    [Google Scholar]
  27. 27. 
    Dagotto G, Yu J, Barouch DH. 2020. Approaches and challenges in SARS-CoV-2 vaccine development. Cell Host Microbe 28:3364–70
    [Google Scholar]
  28. 28. 
    Dai W, Zhang B, Jiang X-M, Su H, Li J et al. 2020. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368:64971331–35
    [Google Scholar]
  29. 29. 
    Ding S, Liang TJ. 2020. Is SARS-CoV-2 also an enteric pathogen with potential fecal-oral transmission? A COVID-19 virological and clinical review. Gastroenterology 159:153–61
    [Google Scholar]
  30. 30. 
    Edeas M, Saleh J, Peyssonnaux C. 2020. Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis?. Int. J. Infect. Dis. 97:303–5
    [Google Scholar]
  31. 31. 
    Fang P, Fang L, Ren J, Hong Y, Liu X et al. 2018. Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA. J. Virol. 92:15e00712-18
    [Google Scholar]
  32. 32. 
    Farooq M, Filliol A, Simoes Eugénio M, Piquet-Pellorce C, Dion S et al. 2019. Depletion of RIPK1 in hepatocytes exacerbates liver damage in fulminant viral hepatitis. Cell Death Dis 10:112
    [Google Scholar]
  33. 33. 
    Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J et al. 2016. The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. mBio 7:6e01721-16
    [Google Scholar]
  34. 34. 
    Felgenhauer U, Schoen A, Gad HH, Hartmann R, Schaubmar AR et al. 2020. Inhibition of SARS-CoV-2 by type I and type III interferons. J. Biol. Chem. 295:4113958–64
    [Google Scholar]
  35. 35. 
    Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S et al. 2020. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396:10249467–78 https://doi.org/10.1016/S0140-6736(20)31604-4
    [Crossref] [Google Scholar]
  36. 36. 
    Freundt EC, Yu L, Goldsmith CS, Welsh S, Cheng A et al. 2010. The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J. Virol. 84:21097–109
    [Google Scholar]
  37. 37. 
    Fung TS, Liu DX. 2018. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 13:6405–30
    [Google Scholar]
  38. 38. 
    Fung TS, Liu DX. 2019. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73:529–57
    [Google Scholar]
  39. 39. 
    Funk CJ, Manzer R, Miura TA, Groshong SD, Ito Y et al. 2009. Rat respiratory coronavirus infection: replication in airway and alveolar epithelial cells and the innate immune response. J. Gen. Virol. 90:Part 122956–64
    [Google Scholar]
  40. 40. 
    Gao Y, Yan L, Huang Y, Liu F, Zhao Y et al. 2020. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368:6492779–82
    [Google Scholar]
  41. 41. 
    Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q et al. 2020. β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 183:152035.e14
    [Google Scholar]
  42. 42. 
    Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. 2020. IL-6: relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 53:13–24
    [Google Scholar]
  43. 43. 
    Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H et al. 2020. Humoral immune response to SARS-CoV-2 in Iceland. New Engl. J. Med. 383:181724–34
    [Google Scholar]
  44. 44. 
    Guo S, Yang C, Diao B, Huang X, Jin M et al. 2015. The NLRP3 inflammasome and IL-1β accelerate immunologically mediated pathology in experimental viral fulminant hepatitis. PLOS Pathog 11:9e1005155
    [Google Scholar]
  45. 45. 
    Haake C, Cook S, Pusterla N, Murphy B. 2020. Coronavirus infections in companion animals: virology, epidemiology, clinical and pathologic features. Viruses 12:91023
    [Google Scholar]
  46. 46. 
    Hackbart M, Deng X, Baker SC. 2020. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. PNAS 117:148094–103
    [Google Scholar]
  47. 47. 
    Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J et al. 2020. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369:6504718–24
    [Google Scholar]
  48. 48. 
    Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K et al. 2008. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. PNAS 105:227809–14
    [Google Scholar]
  49. 49. 
    Haring J, Perlman S. 2001. Mouse hepatitis virus. Curr. Opin. Microbiol. 4:4462–66
    [Google Scholar]
  50. 50. 
    He X, Lau EHY, Wu P, Deng X, Wang J et al. 2020. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26:5672–75
    [Google Scholar]
  51. 51. 
    Hoffmann M, Kleine-Weber H, Pöhlmann S. 2020. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78:4779–84.e5
    [Google Scholar]
  52. 52. 
    Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:2271–80.e8
    [Google Scholar]
  53. 53. 
    Hoffmann M, Mösbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H et al. 2020. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 585:7826588–90
    [Google Scholar]
  54. 54. 
    Horby P, Lim WS, Emberson JR, Mafham M, Bell JL et al. 2021. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med 384:693704
    [Google Scholar]
  55. 55. 
    Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T et al. 2020. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182:2429–46.e14
    [Google Scholar]
  56. 56. 
    Hu B, Guo H, Zhou P, Shi Z-L. 2021. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol 19:14154
    [Google Scholar]
  57. 57. 
    Hu B, Zeng L-P, Yang X-L, Ge X-Y, Zhang W et al. 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathog 13:11e1006698
    [Google Scholar]
  58. 58. 
    Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H et al. 2020. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 395:102381695–704
    [Google Scholar]
  59. 59. 
    Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M et al. 2020. An mRNA vaccine against SARS-CoV-2—preliminary report. New Engl. J. Med 383:192031
    [Google Scholar]
  60. 60. 
    Jin Z, Du X, Xu Y, Deng Y, Liu M et al. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:7811289–93
    [Google Scholar]
  61. 61. 
    Ju B, Zhang Q, Ge J, Wang R, Sun J et al. 2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584:7819115–19
    [Google Scholar]
  62. 62. 
    Kaneko N, Kuo H-H, Boucau J, Farmer JR, Allard-Chamard H et al. 2020. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183:1143–57.e13
    [Google Scholar]
  63. 63. 
    Kang S, Tanaka T, Narazaki M, Kishimoto T. 2019. Targeting interleukin-6 signaling in clinic. Immunity 50:41007–23
    [Google Scholar]
  64. 64. 
    Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H 2020. The architecture of SARS-CoV-2 transcriptome. Cell 181:4914–21.e10
    [Google Scholar]
  65. 65. 
    Kint J, Langereis MA, Maier HJ, Britton P, van Kuppeveld FJ et al. 2016. Infectious bronchitis coronavirus limits interferon production by inducing a host shutoff that requires accessory protein 5b. J. Virol. 90:167519–28
    [Google Scholar]
  66. 66. 
    Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. 2020. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368:6493860–68
    [Google Scholar]
  67. 67. 
    Krähling V, Stein DA, Spiegel M, Weber F, Mühlberger E. 2009. Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. J. Virol. 83:52298–309
    [Google Scholar]
  68. 68. 
    Kuo L, Godeke GJ, Raamsman MJ, Masters PS, Rottier PJ. 2000. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J. Virol. 74:31393–406
    [Google Scholar]
  69. 69. 
    Kuo L, Hurst-Hess KR, Koetzner CA, Masters PS. 2016. Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. J. Virol. 90:94357–68
    [Google Scholar]
  70. 70. 
    Kuo L, Koetzner CA, Hurst KR, Masters PS. 2014. Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein. J. Virol. 88:84451–65
    [Google Scholar]
  71. 71. 
    Laude H, Rasschaert D, Delmas B, Godet M, Gelfi J, Charley B 1990. Molecular biology of transmissible gastroenteritis virus. Vet. Microbiol. 23:1–4147–54
    [Google Scholar]
  72. 72. 
    Laude H, van Reeth K, Pensaert M. 1993. Porcine respiratory coronavirus: molecular features and virus-host interactions. Vet. Res. 24:2125–50
    [Google Scholar]
  73. 73. 
    Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ et al. 2020. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 5:49eabd1554
    [Google Scholar]
  74. 74. 
    Lei J, Kusov Y, Hilgenfeld R. 2018. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir. Res. 149:58–74
    [Google Scholar]
  75. 75. 
    Letizia AG, Ramos I, Obla A, Goforth C, Weir DL et al. 2020. SARS-CoV-2 transmission among Marine recruits during quarantine. N. Engl. J. Med 383:240716
    [Google Scholar]
  76. 76. 
    Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3:237–61
    [Google Scholar]
  77. 77. 
    Li J, Liu Y, Zhang X. 2010. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J. Virol. 84:136472–82
    [Google Scholar]
  78. 78. 
    Li Q, Wu J, Nie J, Zhang L, Hao H et al. 2020. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182:51284–94.e9
    [Google Scholar]
  79. 79. 
    Li S, Yuan L, Dai G, Chen RA, Liu DX, Fung TS. 2019. Regulation of the ER stress response by the ion channel activity of the infectious bronchitis coronavirus envelope protein modulates virion release, apoptosis, viral fitness, and pathogenesis. Front. Microbiol. 10:3022
    [Google Scholar]
  80. 80. 
    Li W, Shi Z, Yu M, Ren W, Smith C et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:5748676–79
    [Google Scholar]
  81. 81. 
    Li W, Zhang C, Sui J, Kuhn JH, Moore MJ et al. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24:81634–43
    [Google Scholar]
  82. 82. 
    Liao Y, Fung TS, Huang M, Fang SG, Zhong Y, Liu DX. 2013. Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway. J. Virol. 87:148124–34
    [Google Scholar]
  83. 83. 
    Libby P, Lüscher T. 2020. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 41:323038–44
    [Google Scholar]
  84. 84. 
    Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R. 2014. Accessory proteins of SARS-CoV and other coronaviruses. Antivir. Res. 109:97–109
    [Google Scholar]
  85. 84a. 
    Liu DX, Liang JQ, Fung TS 2021. Human coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In Encyclopedia of VirologyVol. 2, ed. DH Bamford, M Zuckerman, pp. 42840 Amsterdam: Academic. 4th ed.
    [Google Scholar]
  86. 84b. 
    Liu DX, Ng YL, Fung TS 2019. Infectious bronchitis virus. In Avian Virology: Current Research and Future Trends, ed. SK Samal, pp. 13378 Norfolk, UK: Caister Acad. Press
    [Google Scholar]
  87. 85. 
    Liu Y, Ning Z, Chen Y, Guo M, Liu Y et al. 2020. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582:7813557–60
    [Google Scholar]
  88. 86. 
    Long Q-X, Liu B-Z, Deng H-J, Wu G-C, Deng K et al. 2020. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 26:6845–48
    [Google Scholar]
  89. 87. 
    Lu W, Zheng B-J, Xu K, Schwarz W, Du L et al. 2006. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. PNAS 103:3312540–45
    [Google Scholar]
  90. 88. 
    Lucas C, Wong P, Klein J, Castro TBR, Silva J et al. 2020. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584:7821463–69
    [Google Scholar]
  91. 89. 
    Lv Z, Deng Y-Q, Ye Q, Cao L, Sun C-Y et al. 2020. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 369:65101505–9
    [Google Scholar]
  92. 90. 
    Ma-Lauer Y, Carbajo-Lozoya J, Hein MY, Müller MA, Deng W et al. 2016. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. PNAS 113:35E5192–201
    [Google Scholar]
  93. 91. 
    Meessen-Pinard M, Le Coupanec A, Desforges M, Talbot PJ 2016. Pivotal role of receptor-interacting protein kinase 1 and mixed lineage kinase domain-like in neuronal cell death induced by the human neuroinvasive coronavirus OC43. J. Virol. 91:1e01513-16
    [Google Scholar]
  94. 92. 
    Menachery VD, Gralinski LE, Mitchell HD, Dinnon KH 3rd, Leist SR et al. 2017. Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis. mSphere 2:6e00346-17
    [Google Scholar]
  95. 93. 
    Montelongo-Jauregui D, Vila T, Sultan AS, Jabra-Rizk MA. 2020. Convalescent serum therapy for COVID-19: a 19th century remedy for a 21st century disease. PLOS Pathog 16:8e1008735
    [Google Scholar]
  96. 94. 
    Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A et al. 2020. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586:589–93 https://doi.org/10.1038/s41586-020-2639-4
    [Crossref] [Google Scholar]
  97. 95. 
    Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng C-TK, Makino S. 2008. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol. 82:94471–79
    [Google Scholar]
  98. 96. 
    Neuman BW, Buchmeier MJ. 2016. Supramolecular architecture of the coronavirus particle. Adv. Virus Res. 96:1–27
    [Google Scholar]
  99. 97. 
    Nicklas W, Bleich A, Mähler M. 2012. Viral infections of laboratory mice. The Laboratory Mouse HJ Hedrich 427–80 Boston: Academic 2nd ed .
    [Google Scholar]
  100. 98. 
    Nicolai L, Leunig A, Brambs S, Kaiser R, Weinberger T et al. 2020. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 142:121176–89
    [Google Scholar]
  101. 99. 
    Niemeyer D, Mösbauer K, Klein EM, Sieberg A, Mettelman RC et al. 2018. The papain-like protease determines a virulence trait that varies among members of the SARS-coronavirus species. PLOS Pathog 14:9e1007296
    [Google Scholar]
  102. 100. 
    Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA et al. 2014. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLOS Pathog 10:5e1004077
    [Google Scholar]
  103. 101. 
    Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C et al. 2015. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485:330–39
    [Google Scholar]
  104. 102. 
    Onder G, Rezza G, Brusaferro S. 2020. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323:181775–76
    [Google Scholar]
  105. 103. 
    Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E et al. 2021. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371:17277
    [Google Scholar]
  106. 104. 
    Park A, Iwasaki A. 2020. Type I and type III interferons—induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27:6870–78
    [Google Scholar]
  107. 105. 
    Pedersen NC. 2014. An update on feline infectious peritonitis: virology and immunopathogenesis. Vet. J. 201:2123–32
    [Google Scholar]
  108. 106. 
    Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC et al. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:93661319–25
    [Google Scholar]
  109. 107. 
    Perlman S, Dandekar AA. 2005. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 5:12917–27
    [Google Scholar]
  110. 108. 
    Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N et al. 2020. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 20:9E238–44
    [Google Scholar]
  111. 109. 
    Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. 2020. COVID-19, SARS and MERS: Are they closely related?. Clin. Microbiol. Infect. 26:6729–34
    [Google Scholar]
  112. 110. 
    Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J et al. 2017. The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLOS Pathog 13:3e1006286
    [Google Scholar]
  113. 111. 
    Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN et al. 2020. Multiorgan and renal tropism of SARS-CoV-2. New Engl. J. Med. 383:6590–92
    [Google Scholar]
  114. 112. 
    Raaben M, Groot Koerkamp MJA, Rottier PJM, de Haan CAM 2007. Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cell. Microbiol. 9:92218–29
    [Google Scholar]
  115. 113. 
    Rabouw HH, Langereis MA, Knaap RCM, Dalebout TJ, Canton J et al. 2016. Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses. PLOS Pathog 12:10e1005982
    [Google Scholar]
  116. 114. 
    Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S et al. 2020. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Sci. Transl. Med. 12:557eabc5332
    [Google Scholar]
  117. 115. 
    Ren Y, Shu T, Di Wu, Mu J, Wang C et al. 2020. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell. Mol. Immunol. 17:881–83
    [Google Scholar]
  118. 116. 
    Roth-Cross JK, Bender SJ, Weiss SR. 2008. Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia. J. Virol. 82:209829–38
    [Google Scholar]
  119. 117. 
    Schaller T, Hirschbühl K, Burkhardt K, Braun G, Trepel M et al. 2020. Postmortem examination of patients with COVID-19. JAMA 323:242518–20
    [Google Scholar]
  120. 118. 
    Scheuplein VA, Seifried J, Malczyk AH, Miller L, Höcker L et al. 2015. High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J. Virol. 89:73859–69
    [Google Scholar]
  121. 119. 
    Schneider WM, Chevillotte MD, Rice CM. 2014. Interferon-stimulated genes: A complex web of host defenses. Annu. Rev. Immunol. 32:513–45
    [Google Scholar]
  122. 120. 
    Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin J-B et al. 2020. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 183:1158–68 https://doi.org/10.1016/j.cell.2020.08.017
    [Crossref] [Google Scholar]
  123. 121. 
    Shang J, Wan Y, Luo C, Ye G, Geng Q et al. 2020. Cell entry mechanisms of SARS-CoV-2. PNAS 117:2111727–34
    [Google Scholar]
  124. 122. 
    Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE et al. 2017. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9:396eaal3653
    [Google Scholar]
  125. 123. 
    Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ et al. 2020. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12:541eabb5883
    [Google Scholar]
  126. 124. 
    Shi C-S, Nabar NR, Huang N-N, Kehrl JH. 2019. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 5:101
    [Google Scholar]
  127. 125. 
    Shi J, Wen Z, Zhong G, Yang H, Wang C et al. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368:64941016–20
    [Google Scholar]
  128. 126. 
    Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K et al. 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587:65762
    [Google Scholar]
  129. 127. 
    Siemieniuk RA, Bartoszko JJ, Ge L, Zeraatkar D, Izcovich A et al. 2020. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ 370:m2980
    [Google Scholar]
  130. 128. 
    Sit THC, Brackman CJ, Ip SM, Tam KWS, Law PYT et al. 2020. Infection of dogs with SARS-CoV-2. Nature 586:7831776–78
    [Google Scholar]
  131. 129. 
    Siu K-L, Yuen K-S, Castaño-Rodriguez C, Ye Z-W, Yeung M-L et al. 2019. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 33:88865–77
    [Google Scholar]
  132. 130. 
    Snijder EJ, Limpens RWAL, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC et al. 2020. A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis. PLOS Biol 18:6e3000715
    [Google Scholar]
  133. 131. 
    Sola I, Galán C, Mateos-Gómez PA, Palacio L, Zúñiga S et al. 2011. The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites. J. Virol. 85:105136–49
    [Google Scholar]
  134. 132. 
    Stadnytskyi V, Bax CE, Bax A, Anfinrud P 2020. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. PNAS 117:2211875–77
    [Google Scholar]
  135. 133. 
    Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:2273–85
    [Google Scholar]
  136. 134. 
    Swanson KV, Deng M, Ting JP-Y. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:8477–89
    [Google Scholar]
  137. 135. 
    Tang N, Li D, Wang X, Sun Z. 2020. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18:4844–47
    [Google Scholar]
  138. 136. 
    Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. 2020. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20:6363–74
    [Google Scholar]
  139. 137. 
    Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T et al. 2020. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 369:65081249–55
    [Google Scholar]
  140. 138. 
    To KK-W, Hung IF-N, Ip JD, Chu AW-H, Chan W-M et al. 2020. Coronavirus disease 2019 (COVID-19) re-infection by a phylogenetically distinct severe acute respiratory syndrome coronavirus 2 strain confirmed by whole genome sequencing. Clin. Infect. Dis. In press
    [Google Scholar]
  141. 139. 
    Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV et al. 2020. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 370:95057
    [Google Scholar]
  142. 140. 
    Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT, Baric RS. 2015. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 6:3e00638-15
    [Google Scholar]
  143. 141. 
    Wang H, He S, Deng W, Zhang Y, Li G et al. 2020. Comprehensive insights into the catalytic mechanism of Middle East respiratory syndrome 3C-like protease and severe acute respiratory syndrome 3C-like protease. ACS Catal 10:5871–90
    [Google Scholar]
  144. 142. 
    Wang Q, Vlasova AN, Kenney SP, Saif LJ. 2019. Emerging and re-emerging coronaviruses in pigs. Curr. Opin. Virol. 34:39–49
    [Google Scholar]
  145. 143. 
    Wang Q, Wu J, Wang H, Gao Y, Liu Q et al. 2020. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 182:2417–28.e13
    [Google Scholar]
  146. 144. 
    Wang W, Ye L, Ye L, Li B, Gao B et al. 2007. Up-regulation of IL-6 and TNF-α induced by SARS-coronavirus spike protein in murine macrophages via NF-κB pathway. Virus Res 128:1–21–8
    [Google Scholar]
  147. 145. 
    Wang Y, Liu L. 2016. The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a Toll-like-receptor-related TRAF3-independent mechanism. mBio 7:1e01872-15
    [Google Scholar]
  148. 146. 
    Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. 2020. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324:8782–93
    [Google Scholar]
  149. 147. 
    Wille M, Holmes EC. 2020. Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiol. Rev. 44:5631–44
    [Google Scholar]
  150. 148. 
    Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, Laugks U, Zheng S et al. 2020. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369:65091395–98
    [Google Scholar]
  151. 149. 
    Wong HH, Fung TS, Fang S, Huang M, Le MT, Liu DX. 2018. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology 515:165–75
    [Google Scholar]
  152. 150. 
    Wong L-YR, Ye Z-W, Lui P-Y, Zheng X, Yuan S et al. 2020. Middle East respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HSP70-dependent activation of IRF3 kinase IKKε. J. Immunol. 205:61564–79
    [Google Scholar]
  153. 151. 
    Wu F, Zhao S, Yu B, Chen Y-M, Wang W et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579:7798265–69
    [Google Scholar]
  154. 152. 
    Xia B, Kang X. 2011. Activation and maturation of SARS-CoV main protease. Protein Cell 2:4282–90
    [Google Scholar]
  155. 153. 
    Xu Z, Shi L, Wang Y, Zhang J, Huang L et al. 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8:4420–22
    [Google Scholar]
  156. 154. 
    Xue M, Fu F, Ma Y, Zhang X, Li L, Feng L, Liu P. 2018. The PERK arm of the unfolded protein response negatively regulates transmissible gastroenteritis virus replication by suppressing protein translation and promoting type I interferon production. J. Virol. 92:15e00431-18
    [Google Scholar]
  157. 155. 
    Yang C, Chen Y, Guo G, Li H, Cao D et al. 2013. Expression of B and T lymphocyte attenuator (BTLA) in macrophages contributes to the fulminant hepatitis caused by murine hepatitis virus strain-3. Gut 62:81204–13
    [Google Scholar]
  158. 156. 
    Yang D, Chu H, Hou Y, Chai Y, Shuai H et al. 2020. Attenuated interferon and proinflammatory response in SARS-CoV-2-infected human dendritic cells is associated with viral antagonism of STAT1 phosphorylation. J. Infect. Dis. 222:5734–45
    [Google Scholar]
  159. 157. 
    Yeung M-L, Yao Y, Jia L, Chan JFW, Chan K-H et al. 2016. MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat. Microbiol 1:316004
    [Google Scholar]
  160. 158. 
    Yin W, Mao C, Luan X, Shen D-D, Shen Q et al. 2020. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368:64981499–504
    [Google Scholar]
  161. 159. 
    Yu F, Xiang R, Deng X, Wang L, Yu Z et al. 2020. Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2. Signal Transduct. Targeted Ther. 5:1212
    [Google Scholar]
  162. 159a. 
    Yuan LX, Liang JQ, Zhu QC, Dai G, Li SMet al 2021. A gammacoronavirus, avian infectious bronchitis virus, and an alphacoronavirus, porcine epidemic diarrhea virus, exploit a cell survival strategy by upregulating cFOS to promote virus replication. J. Virol 95:4e02107-20
    [Google Scholar]
  163. 160. 
    Yue Y, Nabar NR, Shi C-S, Kamenyeva O, Xiao X et al. 2018. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis 9:9904
    [Google Scholar]
  164. 161. 
    Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M et al. 2020. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370:6515eabd4570
    [Google Scholar]
  165. 162. 
    Zhang X, Tan Y, Ling Y, Lu G, Liu F et al. 2020. Viral and host factors related to the clinical outcome of COVID-19. Nature 583:7816437–40
    [Google Scholar]
  166. 163. 
    Zhao X, Guo F, Liu F, Cuconati A, Chang J et al. 2014. Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. PNAS 111:186756–61
    [Google Scholar]
  167. 164. 
    Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:7798270–73
    [Google Scholar]
  168. 165. 
    Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN et al. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181:51016–35.e19
    [Google Scholar]
  169. 166. 
    Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW et al. 2011. Ribose 2-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12:2137–43
    [Google Scholar]
/content/journals/10.1146/annurev-micro-110520-023212
Loading
/content/journals/10.1146/annurev-micro-110520-023212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error