1932

Abstract

Alkanes are saturated apolar hydrocarbons that range from their simplest form, methane, to high-molecular-weight compounds. Although alkanes were once considered biologically recalcitrant under anaerobic conditions, microbiological investigations have now identified several microbial taxa that can anaerobically degrade alkanes. Here we review recent discoveries in the anaerobic oxidation of alkanes with a specific focus on archaea that use specific methyl coenzyme M reductases to activate their substrates. Our understanding of the diversity of uncultured alkane-oxidizing archaea has expanded through the use of environmental metagenomics and enrichment cultures of syntrophic methane-, ethane-, propane-, and butane-oxidizing marine archaea with sulfate-reducing bacteria. A recently cultured group of archaea directly couples long-chain alkane degradation with methane formation, expanding the range of substrates used for methanogenesis. This article summarizes the rapidly growing knowledge of the diversity, physiology, and habitat distribution of alkane-degrading archaea.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-111021-045911
2022-09-08
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-111021-045911.html?itemId=/content/journals/10.1146/annurev-micro-111021-045911&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. 2017. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407–25
    [Google Scholar]
  2. 2.
    Aeckersberg F, Bak F, Widdel F. 1991. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156:5–14
    [Google Scholar]
  3. 3.
    Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS. 2010. Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–28
    [Google Scholar]
  4. 4.
    Allen KD, Wegener G, White RH. 2014. Discovery of multiple modified F430 coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F430 in nature. Appl. Environ. Microbiol. 80:6403–12
    [Google Scholar]
  5. 5.
    Aoki M, Ehara M, Saito Y, Yoshioka H, Miyazaki M et al. 2014. A long-term cultivation of an anaerobic methane-oxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor. PLOS ONE 9:e105356
    [Google Scholar]
  6. 6.
    Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S et al. 2019. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Front. Microbiol. 10:3041
    [Google Scholar]
  7. 7.
    Arshad A, Speth DR, de Graaf RM, Op den Camp HJM, Jetten MSM, Welte CU. 2015. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front. Microbiol. 6:1423
    [Google Scholar]
  8. 8.
    Atlas R, Bragg J. 2009. Bioremediation of marine oil spills: when and when not–the Exxon Valdez experience. Microb. Biotechnol. 2:213–21
    [Google Scholar]
  9. 9.
    Bai YN, Wang XN, Wu J, Lu YZ, Fu L et al. 2019. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Res. 164:114935
    [Google Scholar]
  10. 10.
    Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs K-U et al. 2016. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1:16002
    [Google Scholar]
  11. 11.
    Barnes RO, Goldberg ED. 1976. Methane production and consumption in anoxic marine-sediments. Geology 4:297–300
    [Google Scholar]
  12. 12.
    Basen M, Krüger M, Milucka J, Kuever J, Kahnt J et al. 2011. Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environ. Microbiol. 13:1370–79
    [Google Scholar]
  13. 13.
    Beal EJ, House CH, Orphan VJ. 2009. Manganese- and iron-dependent marine methane oxidation. Science 325:184–87
    [Google Scholar]
  14. 14.
    Bertrand JC, Almallah M, Acquaviva M, Mille G. 1990. Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett. Appl. Microbiol. 11:260–63
    [Google Scholar]
  15. 15.
    Boetius A, Holler T, Knittel K, Felden J, Wenzhöfer F. 2009. The seabed as natural laboratory: lessons from uncultivated methanotrophs. Uncultivated Microorganisms SS Epstein 293–316 Berlin: Springer
    [Google Scholar]
  16. 16.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–26
    [Google Scholar]
  17. 17.
    Borrel G, Adam PS, McKay LJ, Chen L-X, Sierra-García IN et al. 2019. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4:603–13First suggestion of ACR/MCR-based methanogenic hydrocarbon degradation in a single archaeon.
    [Google Scholar]
  18. 18.
    Boyd JA, Jungbluth SP, Leu AO, Evans PN, Woodcroft BJ et al. 2019. Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi. ISME J 13:1269–79
    [Google Scholar]
  19. 19.
    Brzeszcz J, Kaszycki P. 2018. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 29:359–407
    [Google Scholar]
  20. 20.
    Cai C, Leu AO, Xie G-J, Guo J, Feng Y et al. 2018. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 12:1929–39
    [Google Scholar]
  21. 21.
    Callaghan AV. 2013. Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr. Opin. Biotechnol. 24:506–15
    [Google Scholar]
  22. 22.
    Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR et al. 2021. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLOS Biol 20:e3001508
    [Google Scholar]
  23. 23.
    Chen SC, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M et al. 2019. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568:108–11First cultivation of an ethane-oxidizing archaeon.
    [Google Scholar]
  24. 24.
    Crespo-Medina M, Meile C, Hunter K, Diercks A, Asper V et al. 2014. The rise and fall of methanotrophy following a deepwater oil-well blowout. Nat. Geosci. 7:423–27
    [Google Scholar]
  25. 25.
    Crone TJ, Tolstoy M. 2010. Magnitude of the 2010 Gulf of Mexico oil leak. Science 330:634
    [Google Scholar]
  26. 26.
    Dekas AE, Poretsky RS, Orphan VJ. 2009. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–26
    [Google Scholar]
  27. 27.
    Dombrowski N, Seitz KW, Teske AP, Baker BJ. 2017. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5106Insights into the diversity of alkane-oxidizing archaea, including the first GoM-Arc1 genome, of the Guaymas Basin.
    [Google Scholar]
  28. 28.
    Dombrowski N, Teske AP, Baker BJ. 2018. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9:4999
    [Google Scholar]
  29. 29.
    Dong X, Rattray JE, Campbell DC, Webb J, Chakraborty A et al. 2020. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nat. Commun. 11:5825
    [Google Scholar]
  30. 30.
    Ehrenreich P, Behrends A, Harder J, Widdel F. 2000. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch. Microbiol. 173:58–64
    [Google Scholar]
  31. 31.
    Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. 1997. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–62
    [Google Scholar]
  32. 32.
    Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–48
    [Google Scholar]
  33. 33.
    Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. PNAS 113:12792–96
    [Google Scholar]
  34. 34.
    Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ et al. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–38First detection of noncanonical MCR genes by metagenomics.
    [Google Scholar]
  35. 35.
    Fathepure BZ. 2014. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front. Microbiol. 5:173
    [Google Scholar]
  36. 36.
    Foster JW. 1962. Hydrocarbons as substrates for microorganisms. Antonie Van Leeuwenhoek J. Microbiol. Serol 28:241–74
    [Google Scholar]
  37. 37.
    Girguis PR, Orphan VJ, Hallam SJ, DeLong EF. 2003. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl. Environ. Microbiol. 69:5472–82
    [Google Scholar]
  38. 38.
    Goffredi SK, Wilpiszeski R, Lee R, Orphan VJ. 2008. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME J 2:204–20
    [Google Scholar]
  39. 39.
    Gunsalus RP, Romesser JA, Wolfe RS. 1978. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17:2374–77
    [Google Scholar]
  40. 40.
    Hahn CJ, Laso-Pérez R, Vulcano F, Vaziourakis K-M, Stokke R et al. 2020.. “ Candidatus Ethanoperedens,” a thermophilic genus of archaea mediating the anaerobic oxidation of ethane. mBio 11:e00600–20
    [Google Scholar]
  41. 41.
    Hahn CJ, Lemaire ON, Kahnt J, Engilberge S, Wegener G, Wagner T. 2021. Crystal structure of a key enzyme for anaerobic ethane activation. Science 373:118–21First structural elucidation of ethane-activating ACR by native crystallization.
    [Google Scholar]
  42. 42.
    Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D et al. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–62
    [Google Scholar]
  43. 43.
    Haroon MF, Hu S, Shi Y, Imelfort M, Keller J et al. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–70First cultivation of “Candidatus Methanoperedens,” an archaeon that couples methane oxidation to nitrate reduction.
    [Google Scholar]
  44. 44.
    He X, Chadwick G, Kempes C, Shi Y, McGlynn S et al. 2019. Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns. Environ. Microbiol. 21:631–47
    [Google Scholar]
  45. 45.
    He Y, Li M, Perumal V, Feng X, Fang J et al. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat. Microbiol. 1:16035
    [Google Scholar]
  46. 46.
    Head IM, Jones DM, Larter SR. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–52
    [Google Scholar]
  47. 47.
    Head IM, Jones DM, Roling WFM. 2006. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 4:173–82
    [Google Scholar]
  48. 48.
    Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF. 1999. Methane-consuming archaebacteria in marine sediments. Nature 398:802–5
    [Google Scholar]
  49. 49.
    Hoehler TM, Alperin MJ, Albert DB, Martens CS. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles 8:451–63
    [Google Scholar]
  50. 50.
    Holler T, Wegener G, Knittel K, Boetius A, Brunner B et al. 2009. Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. Environ. Microbiol. Rep. 1:370–76
    [Google Scholar]
  51. 51.
    Holler T, Widdel F, Knittel K, Amann R, Kellermann MY et al. 2011. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–56
    [Google Scholar]
  52. 52.
    House CH, Orphan VJ, Turk KA, Thomas B, Pernthaler A et al. 2009. Extensive carbon isotopic heterogeneity among methane seep microbiota. Environ. Microbiol. 11:2207–15
    [Google Scholar]
  53. 53.
    Hua Z-S, Wang Y-L, Evans PN, Qu Y-N, Goh KM et al. 2019. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10:4574
    [Google Scholar]
  54. 54.
    IEA (Int. Energy Agency) 2021. World Energy Balances: Overview Paris: IEA
    [Google Scholar]
  55. 55.
    Iversen N, Jørgensen BB. 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30:944–55
    [Google Scholar]
  56. 56.
    Ji J-H, Zhou L, Mbadinga SM, Irfan M, Liu Y-F et al. 2020. Methanogenic biodegradation of C9 to C12n-alkanes initiated by Smithella via fumarate addition mechanism. AMB Express 10:23
    [Google Scholar]
  57. 57.
    Joye SB, MacDonald IR, Leifer I, Asper V. 2011. Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nat. Geosci. 4:160–64
    [Google Scholar]
  58. 58.
    Khelifi N, Amin Ali O, Roche P, Grossi V, Brochier-Armanet C et al. 2014. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME J 8:2153–66
    [Google Scholar]
  59. 59.
    Kleindienst S, Ramette A, Amann R, Knittel K. 2012. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ. Microbiol. 14:2689–710
    [Google Scholar]
  60. 60.
    Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H et al. 2007. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901
    [Google Scholar]
  61. 61.
    Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63:311–34
    [Google Scholar]
  62. 62.
    Knittel K, Boetius A, Lemke A, Eilers H, Lochte K et al. 2003. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol. J. 20:269–94
    [Google Scholar]
  63. 63.
    Knittel K, Loesekann T, Boetius A, Kort R, Amann R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71:467–79
    [Google Scholar]
  64. 64.
    Kropp KG, Davidova IA, Suflita JM. 2000. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl. Environ. Microbiol. 66:5393–98
    [Google Scholar]
  65. 65.
    Krüger M, Meyerdieks A, Glöckner FO, Amann R, Widdel F et al. 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–81
    [Google Scholar]
  66. 66.
    Krukenberg V, Harding K, Richter M, Glöckner FO, Berg J et al. 2016. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium of the HotSeep-1 cluster involved in the thermophilic anaerobic oxidation of methane. Environ. Microbiol. 18:3073–91
    [Google Scholar]
  67. 67.
    Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE et al. 2018. Gene expression and ultrastructure of meso-and thermophilic methanotrophic consortia. Environ. Microbiol. 20:1651–66
    [Google Scholar]
  68. 68.
    Kvenvolden KA, Cooper CK. 2003. Natural seepage of crude oil into the marine environment. Geo-Mar. Lett. 23:140–46
    [Google Scholar]
  69. 69.
    Laso-Pérez R, Hahn C, van Vliet DM, Tegetmeyer HE, Schubotz F et al. 2019. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio 10:e01814–19
    [Google Scholar]
  70. 70.
    Laso-Pérez R, Krukenberg V, Musat F, Wegener G. 2018. Establishing anaerobic hydrocarbon-degrading enrichment cultures of microorganisms under strictly anoxic conditions. Nat. Protoc. 13:1310
    [Google Scholar]
  71. 71.
    Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ et al. 2016. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401First description of an archaeon that uses MCR for the activation of multicarbon compounds.
    [Google Scholar]
  72. 72.
    Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ et al. 2020. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J 14:1030–41
    [Google Scholar]
  73. 73.
    Loesekann T, Knittel K, Nadalig T, Fuchs B, Niemann H et al. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl. Environ. Microbiol. 73:3348–62
    [Google Scholar]
  74. 74.
    MacDonald I, Guinasso N, Ackleson S, Amos J, Duckworth R et al. 1993. Natural oil slicks in the Gulf of Mexico visible from space. J. Geophys. Res. Oceans 98:16351–64
    [Google Scholar]
  75. 75.
    Mackelprang R, Mason OU. 2016. Marine microbiology: community clean up. Nat. Microbiol. 1:16102
    [Google Scholar]
  76. 76.
    Martens CS, Berner RA. 1974. Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185:1167–69
    [Google Scholar]
  77. 77.
    Mayr S, Latkoczy C, Krüger M, Günther D, Shima S et al. 2008. Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. J. Am. Chem. Soc. 130:10758–67
    [Google Scholar]
  78. 78.
    McGlynn SE. 2017. Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ 32:5–13
    [Google Scholar]
  79. 79.
    McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–35First demonstration of direct extracellular electron transfer in AOM by ANME-2 archaea (see also Reference 144).
    [Google Scholar]
  80. 80.
    McGlynn SE, Chadwick GL, O'Neill A, Mackey M, Thor A et al. 2018. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners as revealed by integrated multimodal analytical microscopy. Appl. Environ. Microbiol. 84:e00399–18
    [Google Scholar]
  81. 81.
    McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM et al. 2019. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4:614–22
    [Google Scholar]
  82. 82.
    Metcalfe KS, Murali R, Mullin SW, Connon SA, Orphan VJ. 2021. Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy. ISME J 15:377–96
    [Google Scholar]
  83. 83.
    Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glockner FO et al. 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12:422–39
    [Google Scholar]
  84. 84.
    Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V et al. 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–15
    [Google Scholar]
  85. 85.
    Milucka J, Widdel F, Shima S. 2013. Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia. Environ. Microbiol. 15:1561–71
    [Google Scholar]
  86. 86.
    Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W et al. 2016. Metabolic traits of an uncultured archaeal lineage—MSBL1—from brine pools of the Red Sea. Sci. Rep. 6:19181
    [Google Scholar]
  87. 87.
    Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol. 9:187–96
    [Google Scholar]
  88. 88.
    Nauhaus K, Boetius A, Krüger M, Widdel F. 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediments from a marine gas hydrate area. Environ. Microbiol. 4:296–305
    [Google Scholar]
  89. 89.
    Nauhaus K, Treude T, Boetius A, Krüger M. 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7:98–106
    [Google Scholar]
  90. 90.
    Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T et al. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–58
    [Google Scholar]
  91. 91.
    Novelli GD, Zobell CE. 1944. Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J. Bacteriol. 47:447–48
    [Google Scholar]
  92. 92.
    Orphan VJ, Hinrichs K-U, Ussler W 3rd, Paull CK, Taylor LT et al. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 67:1922–34
    [Google Scholar]
  93. 93.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–87
    [Google Scholar]
  94. 94.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. PNAS 99:7663–68
    [Google Scholar]
  95. 95.
    Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJEC, Gottschal JC 2000. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl. Environ. Microbiol. 66:1126–32
    [Google Scholar]
  96. 96.
    Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. 2020. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38:1079–86
    [Google Scholar]
  97. 97.
    Rabus R, Boll M, Golding B, Wilkes H. 2016. Anaerobic degradation of p-alkylated benzoates and toluenes. J. Mol. Microbiol. Biotechnol. 26:63–75
    [Google Scholar]
  98. 98.
    Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T et al. 2001. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl) succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J. Bacteriol. 183:1707–15
    [Google Scholar]
  99. 99.
    Redmond MC, Valentine DL. 2012. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. PNAS 109:20292–97
    [Google Scholar]
  100. 100.
    Reeburgh WS. 1976. Methane consumption in Cariaco trench waters and sediments. Earth Planet. Sci. Lett. 28:337–44
    [Google Scholar]
  101. 101.
    Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V. 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227:18–30
    [Google Scholar]
  102. 102.
    Rona PA, Bougault H, Charlou JL, Appriou P, Nelsen TA et al. 1992. Hydrothermal circulation, serpentinization, and degassing at a Rift-Valley fracture-zone intersection: Mid-Atlantic Ridge near 15°N, 45°W. Geology 20:783–86
    [Google Scholar]
  103. 103.
    Rosenfeld WD. 1947. Anaerobic oxidation of hydrocarbons by sulfate-reducing bacteria. J. Bacteriol. 54:664–65
    [Google Scholar]
  104. 104.
    Rueter P, Rabus R, Wilkest H, Aeckersberg F, Rainey FA et al. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–58
    [Google Scholar]
  105. 105.
    Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B. 2010. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–8
    [Google Scholar]
  106. 106.
    Scheller S, Goenrich M, Thauer RK, Jaun B. 2013. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M. J. Am. Chem. Soc. 135:14985–95
    [Google Scholar]
  107. 107.
    Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. 2016. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–7First demonstration of physiological decoupling of syntrophic AOM by ANME from sulfate reduction using AQDS and iron oxides.
    [Google Scholar]
  108. 108.
    Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61:262–80
    [Google Scholar]
  109. 109.
    Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J et al. 2019. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10:1822
    [Google Scholar]
  110. 110.
    Shao Z, Wang W. 2013. Enzymes and genes involved in aerobic alkane degradation. Front. Microbiol. 4:116
    [Google Scholar]
  111. 111.
    Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs. Nature 416:522–24
    [Google Scholar]
  112. 112.
    Shima S, Krueger M, Weinert T, Demmer U, Kahnt J et al. 2012. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481:98–101
    [Google Scholar]
  113. 113.
    Shima S, Thauer RK. 2005. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr. Opin. Microbiol. 8:643–48
    [Google Scholar]
  114. 114.
    Simon J, van Spanning RJ, Richardson DJ. 2008. The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim. Biophys. Acta Bioenerg. 1777:1480–90
    [Google Scholar]
  115. 115.
    Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. 2017. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio 8:e00530–17
    [Google Scholar]
  116. 116.
    Skovhus TL, Lee JS, Little BJ 2017. Predominant MIC mechanisms in the oil and gas industry. Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry TL Skovhus, D Enning, JS Lee 75–85 Boca Raton, FL: CRC Press
    [Google Scholar]
  117. 117.
    So CM, Phelps CD, Young L 2003. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl. Environ. Microbiol. 69:3892–900
    [Google Scholar]
  118. 118.
    So CM, Young LY. 1999. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl. Environ. Microbiol. 65:5532–40
    [Google Scholar]
  119. 119.
    Söhngen NL. 1906. Über Bakterien, welche Methan als Kohlenstoffnahrung und Energieqeuelle gebrauchen. Zbl. Bakteriol. II Nat. 15:513–17
    [Google Scholar]
  120. 120.
    Sørensen K, Finster K, Ramsing N. 2001. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microb. Ecol. 42:1–10
    [Google Scholar]
  121. 121.
    Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J et al. 2019. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4:1138–48
    [Google Scholar]
  122. 122.
    Spormann AM, Widdel F. 2000. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105
    [Google Scholar]
  123. 123.
    Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH. 2012. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 14:1333–46
    [Google Scholar]
  124. 124.
    Tamisier M, Schmidt M, Vogt C, Kümmel S, Stryhanyuk H et al. 2022. Iron corrosion by methanogenic archaea characterized by stable isotope effects and crust mineralogy. Environ. Microbiol. 24:2583–95
    [Google Scholar]
  125. 125.
    Tan B, Fowler SJ, Laban NA, Dong X, Sensen CW et al. 2015. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME J. 9:92028–45
    [Google Scholar]
  126. 126.
    Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand J-C, Cuny P. 2010. Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–31
    [Google Scholar]
  127. 127.
    Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D et al. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68:1994–2007
    [Google Scholar]
  128. 128.
    Thauer RK. 2019. Methyl (alkyl)-coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 58:5198–220
    [Google Scholar]
  129. 129.
    Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6:579–91
    [Google Scholar]
  130. 130.
    Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM. 2017. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017:1654237
    [Google Scholar]
  131. 131.
    Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A. 2007. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl. Environ. Microbiol. 73:2271–83
    [Google Scholar]
  132. 132.
    Vaksmaa A, Guerrero-Cruz S, van Alen TA, Cremers G, Ettwig KF et al. 2017. Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’ archaea from an Italian paddy field soil. Appl. Microbiol. Biotechnol. 101:7075–84
    [Google Scholar]
  133. 133.
    Vaksmaa A, Lüke C, Van Alen T, Valè G, Lupotto E et al. 2016. Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil. FEMS Microbiol. Ecol. 92:12fiw181
    [Google Scholar]
  134. 134.
    Valenzuela EI, Prieto-Davó A, López-Lozano NE, Hernández-Eligio A, Vega-Alvarado L et al. 2017. Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl. Environ. Microbiol. 83:e00645–17
    [Google Scholar]
  135. 135.
    Vigneron A, Head IM, Tsesmetzis N. 2018. Damage to offshore production facilities by corrosive microbial biofilms. Appl. Microbiol. Biotechnol. 102:2525–33
    [Google Scholar]
  136. 136.
    Wagner T, Wegner C-E, Kahnt J, Ermler U, Shima S. 2017. Phylogenetic and structural comparisons of the three types of methyl coenzyme M reductase from Methanococcales and Methanobacteriales. J. Bacteriol. 199:16e00197–17
    [Google Scholar]
  137. 137.
    Wang F, Gu Y, O'Brien JP, Sophia MY, Yalcin SE et al. 2019. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177:2361–69.e310
    [Google Scholar]
  138. 138.
    Wang F-P, Zhang Y, Chen Y, He Y, Qi J et al. 2014. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J 8:1069–78
    [Google Scholar]
  139. 139.
    Wang L, Wang W, Lai Q, Shao Z. 2010. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ. Microbiol. 12:1230–42
    [Google Scholar]
  140. 140.
    Wang Y, Feng X, Natarajan VP, Xiao X, Wang F 2019. Diverse anaerobic methane- and multi-carbon alkane-metabolizing archaea coexist and show activity in Guaymas Basin hydrothermal sediment. Environ. Microbiol. 21:1344–55
    [Google Scholar]
  141. 141.
    Wang Y, Wegener G, Hou J, Wang F, Xiao X 2019. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol 4:595–602
    [Google Scholar]
  142. 142.
    Wang Y, Wegener G, Williams TA, Xie R, Hou J et al. 2021. A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism. Sci. Adv. 7:eabj1453
    [Google Scholar]
  143. 143.
    Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K. 2016. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front. Microbiol. 7:46
    [Google Scholar]
  144. 144.
    Wegener KV, Riedel D, Tegetmeyer HE, Boetius A. 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–90First demonstration of direct interspecies electron transfer in AOM by thermophilic ANME-1 (see also Reference 79).
    [Google Scholar]
  145. 145.
    Widdel F, Bak F. 1992. Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes A Balows, HG Trüper, M Dworkin, W Harder, KH Schleifer 3352–78 Berlin: Springer
    [Google Scholar]
  146. 146.
    Wilson R, Monaghan P, Osanik A, Price L, Rogers M. 1974. Natural marine oil seepage. Science 184:857–65
    [Google Scholar]
  147. 147.
    Wongnate T, Sliwa D, Ginovska B, Smith D, Wolf MW et al. 2016. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352:953–58
    [Google Scholar]
  148. 148.
    Yan Z, Ferry JG. 2018. Electron bifurcation and confurcation in methanogenesis and reverse methanogenesis. Front. Microbiol. 9:1322
    [Google Scholar]
  149. 149.
    Yu H, Skennerton CT, Chadwick GL, Leu AO, Aoki M et al. 2022. Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. ISME J 16:168–77
    [Google Scholar]
  150. 150.
    Yu H, Speth D, Connon S, Goudeau D, Malmstrom R et al. 2022. Community structure and microbial associations in sediment-free methanotrophic enrichment cultures from a marine methane seep. Appl. Environ. Microbiol 88:e0210921
    [Google Scholar]
  151. 151.
    Yu T, Wu W, Liang W, Lever MA, Hinrichs K-U, Wang F 2018. Growth of sedimentary Bathyarchaeota on lignin as an energy source. PNAS 115:6022–27
    [Google Scholar]
  152. 152.
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L et al. 2017. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–58
    [Google Scholar]
  153. 153.
    Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D et al. 2011. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ. Microbiol. Rep. 3:125–35
    [Google Scholar]
  154. 154.
    Zehnder AJ, Brock TD. 1979. Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137:420–32
    [Google Scholar]
  155. 155.
    Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F. 1999. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–69
    [Google Scholar]
  156. 156.
    Zhang Y, Maignien L, Zhao X, Wang F, Boon N 2011. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol 11:137
    [Google Scholar]
  157. 157.
    Zhao R, Biddle JF. 2021. Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin. ISME Commun 1:25
    [Google Scholar]
  158. 158.
    Zhou Z, Zhang C-j, Liu P-f, Fu L, Laso-Pérez R et al. 2022. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature 601:257–62Pioneering cultivation of an archaeon that couples alkane oxidation to methanogenesis without requiring syntrophic partners.
    [Google Scholar]
  159. 159.
    Zhu B, Bradford L, Huang S, Szalay A, Leix C et al. 2017. Unexpected diversity and high abundance of putative nitric oxide dismutase (Nod) genes in contaminated aquifers and wastewater treatment systems. Appl. Environ. Microbiol. 83:e02750–16
    [Google Scholar]
  160. 160.
    Zobell CE. 1946. Action of microorganisms on hydrocarbons. Bacteriol. Rev. 10:1–49
    [Google Scholar]
/content/journals/10.1146/annurev-micro-111021-045911
Loading
/content/journals/10.1146/annurev-micro-111021-045911
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error