
Full text loading...
Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made.
Article metrics loading...
Full text loading...
Literature Cited
Data & Media loading...
Download the Supplemental Data (XLSX). Download the Supplemental Methods (PDF).