1932

Abstract

Calculations of neutrino–nucleus cross sections begin with the neutrino–nucleon interaction, making the latter critically important to flagship neutrino oscillation experiments despite limited measurements with poor statistics. Alternatively, lattice quantum chromodynamics (LQCD) can be used to determine these interactions from the Standard Model with quantifiable theoretical uncertainties. Recent LQCD results of are in excellent agreement with data, and results for the (quasi-)elastic nucleon form factors with full uncertainty budgets are expected within a few years. We review the status of the field and LQCD results for the nucleon axial form factor, (2), a major source of uncertainty in modeling sub-GeV neutrino–nucleon interactions. Results from different LQCD calculations are consistent but collectively disagree with existing models, with potential implications for current and future neutrino oscillation experiments. We describe a road map to solidify confidence in the LQCD results and discuss future calculations of more complicated processes, which are important to few-GeV neutrino oscillation experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-010622-120608
2022-09-26
2025-02-14
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-010622-120608.html?itemId=/content/journals/10.1146/annurev-nucl-010622-120608&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Esteban I et al. J. High Energy Phys. 2009:178 2020.)
    [Google Scholar]
  2. 2.
    Zyla PA et al. PTEP 2020:083C01 2020.)
    [Google Scholar]
  3. 3.
    Abi B et al. J. Instrum. 15:T08008 2020.)
    [Google Scholar]
  4. 4.
    Abe K et al. arXiv:1805.04163 [physics.ins-det] 2018.)
  5. 5.
    Formaggio JA, Zeller GP. Rev. Mod. Phys. 84:1307 2012.)
    [Google Scholar]
  6. 6.
    Alvarez-Ruso L, Hayato Y, Nieves J. New J. Phys. 16:075015 2014.)
    [Google Scholar]
  7. 7.
    Mosel U. Annu. Rev. Nucl. Part. Sci. 66:171 2016.)
    [Google Scholar]
  8. 8.
    Katori T, Martini M. J.Phys. G 45:013001 2018.)
    [Google Scholar]
  9. 9.
    Alvarez-Ruso L et al. Prog. Part. Nucl. Phys. 100:1 2018.)
    [Google Scholar]
  10. 10.
    Garvey GT et al. Phys. Rep. 580:1 2015.)
    [Google Scholar]
  11. 11.
    Barish S et al. Phys. Rev. D 16:3103 1977.)
    [Google Scholar]
  12. 12.
    Fanourakis G et al. Phys. Rev. D 21:562 1980.)
    [Google Scholar]
  13. 13.
    Baker N et al. Phys. Rev. D 23:2499 1981.)
    [Google Scholar]
  14. 14.
    Kitagaki T et al. Phys. Rev. D 28:436 1983.)
    [Google Scholar]
  15. 15.
    Allasia D et al. Nucl. Phys. B 343:285 1990.)
    [Google Scholar]
  16. 16.
    Bernard V, Kaiser N, Lee TSH, Meissner UG. Phys. Rep. 246:315 1994.)
    [Google Scholar]
  17. 17.
    Bernard V, Elouadrhiri L, Meissner UG. J. Phys. G 28:R1 2002.)
    [Google Scholar]
  18. 18.
    Meyer AS, Betancourt M, Gran R, Hill RJ. Phys. Rev. D 93:113015 2016.)
    [Google Scholar]
  19. 19.
    Hill RJ, Kammel P, Marciano WJ, Sirlin A. Rep. Prog. Phys. 81:096301 2018.)
    [Google Scholar]
  20. 20.
    Lu XG et al. Phys. Rev. D 92:051302 2015.)
    [Google Scholar]
  21. 21.
    Munteanu L et al. Phys. Rev. D 101:092003 2020.)
    [Google Scholar]
  22. 22.
    Hamacher-Baumann P, Lu X, Martín-Albo J. Phys. Rev. D 102:033005 2020.)
    [Google Scholar]
  23. 23.
    Abed Abud A et al. Instruments 5:31 2021.)
    [Google Scholar]
  24. 24.
    Cai T. 2021. Measurements of nuclear effects and the cross section in MINER A with neutron tagging PhD Thesis Rochester Univ. Rochester, NY:
    [Google Scholar]
  25. 25.
    Chang CC et al. Nature 558:91 2018.)
    [Google Scholar]
  26. 26.
    Bradford R, Bodek A, Budd HS, Arrington J. Nucl. Phys. B Proc. Suppl. 159:127 2006.)
    [Google Scholar]
  27. 27.
    Borah K, Hill RJ, Lee G, Tomalak O. Phys. Rev. D 102:074012 2020.)
    [Google Scholar]
  28. 28.
    Dubbers D, Märkisch B. Annu. Rev. Nucl. Part. Sci. 71:139 2021.)
    [Google Scholar]
  29. 29.
    Aoki Y et al. arXiv:2111.09849 [hep-lat] 2021.)
  30. 30.
    Bär O. Int. J. Mod. Phys. A 32:1730011 2017.)
    [Google Scholar]
  31. 31.
    Ottnad K. Eur. Phys. J. A 57:50 2021.)
    [Google Scholar]
  32. 32.
    Jang YC, Gupta R, Yoon B, Bhattacharya T. Phys. Rev. Lett. 124:072002 2020.)
    [Google Scholar]
  33. 33.
    Gupta R et al. Phys. Rev. D 98:034503 2018.)
    [Google Scholar]
  34. 34.
    Alexandrou C et al. Phys. Rev. D 103:034509 2021.)
    [Google Scholar]
  35. 35.
    Abramczyk M et al. Phys. Rev. D 101:034510 2020.)
    [Google Scholar]
  36. 36.
    Park S et al. Phys. Rev. D 105:054505 2022.)
    [Google Scholar]
  37. 37.
    Bali GS et al. J. High Energy Phys. 2005:126 2020.)
    [Google Scholar]
  38. 38.
    Hasan N et al. Phys. Rev. D 99:114505 2019.)
    [Google Scholar]
  39. 39.
    Djukanovic D et al. arXiv:2112.00127 [hep-lat] 2021.)
  40. 40.
    Harris T et al. Phys. Rev. D 100:034513 2019.)
    [Google Scholar]
  41. 41.
    Liang J et al. Phys. Rev. D 98:074505 2018.)
    [Google Scholar]
  42. 42.
    Shintani E et al. Phys. Rev. D 99:014510 2019. Erratum Phys. Rev. D 102:019902 2020.)
    [Google Scholar]
  43. 43.
    Ishikawa KI et al. Phys. Rev. D 98:074510 2018.)
    [Google Scholar]
  44. 44.
    Berkowitz E et al. SC18: International Conference for High Performance Computing, Networking, Storage and Analysis697–705 Piscataway, NJ: IEEE 2018.)
    [Google Scholar]
  45. 45.
    Walker-Loud A et al. Proc. Sci. CD2018:020 2020.)
    [Google Scholar]
  46. 46.
    Smit J. Introduction to Quantum Fields on a Lattice: A Robust Mate Cambridge, UK: Cambridge Univ. Press 2011.)
    [Google Scholar]
  47. 47.
    DeGrand T, Detar CE. Lattice Methods for Quantum Chromodynamics Singapore: World Scientific 2006.)
    [Google Scholar]
  48. 48.
    Gattringer C, Lang CB. Quantum Chromodynamics on the Lattice Berlin: Springer 2010.)
    [Google Scholar]
  49. 49.
    Duane S, Kennedy AD, Pendleton BJ, Roweth D. Phys. Lett. B 195:216 1987.)
    [Google Scholar]
  50. 50.
    Clark M et al. Comput. Phys. Commun. 181:1517 2010.)
    [Google Scholar]
  51. 51.
    Babich R et al. SC '11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis Article 70 New York: Assoc. Comput. Mach 2011.)
    [Google Scholar]
  52. 52.
    Symanzik K. Nucl. Phys. B 226:187 1983.)
    [Google Scholar]
  53. 53.
    Symanzik K. Nucl. Phys. B 226:205 1983.)
    [Google Scholar]
  54. 54.
    Wilson KG. Phys. Rev. D 10:2445 1974.)
    [Google Scholar]
  55. 55.
    Kogut JB, Susskind L. Phys. Rev. D 11:395 1975.)
    [Google Scholar]
  56. 56.
    Banks T, Susskind L, Kogut JB. Phys. Rev. D 13:1043 1976.)
    [Google Scholar]
  57. 57.
    Banks T et al. Phys. Rev. D 15:1111 1977.)
    [Google Scholar]
  58. 58.
    Susskind L. Phys. Rev. D 16:3031 1977.)
    [Google Scholar]
  59. 59.
    Sheikholeslami B, Wohlert R. Nucl. Phys. B 259:572 1985.)
    [Google Scholar]
  60. 60.
    Frezzotti R, Grassi PA, Sint S, Weisz P. J. High Energy Phys. 0108: 058: 2001.)
    [Google Scholar]
  61. 61.
    Kaplan DB. Phys. Lett. B 288:342 1992.)
    [Google Scholar]
  62. 62.
    Shamir Y. Nucl. Phys. B 406:90 1993.)
    [Google Scholar]
  63. 63.
    Furman V, Shamir Y. Nucl. Phys. B 439:54 1995.)
    [Google Scholar]
  64. 64.
    Golterman MFL, Smit J. Nucl. Phys. B 255:328 1985.)
    [Google Scholar]
  65. 65.
    Bailey JA. Phys. Rev. D 75:114505 2007.)
    [Google Scholar]
  66. 66.
    Lin Y et al. Phys. Rev. D 103:034501 2021.)
    [Google Scholar]
  67. 67.
    Luscher M, Sint S, Sommer R, Weisz P. Nucl. Phys. B 478:365 1996.)
    [Google Scholar]
  68. 68.
    Luscher M et al. Nucl. Phys. B 491:323 1997.)
    [Google Scholar]
  69. 69.
    Luscher M, Sint S, Sommer R, Wittig H. Nucl. Phys. B 491:344 1997.)
    [Google Scholar]
  70. 70.
    Capitani S, Lüscher M, Sommer R, Wittig H. Nucl. Phys. B 544:669 1999. Erratum Nucl. Phys. B 582:7622000)
    [Google Scholar]
  71. 71.
    Frezzotti R, Rossi GC. J. High Energy Phys. 0408:007 2004.)
    [Google Scholar]
  72. 72.
    Clark MA et al. arXiv:1612.07873 [hep-lat] 2016.)
  73. 73.
    Boyle PA. arXiv:1402.2585 [hep-lat] 2014.)
  74. 74.
    Cohen SD, Brower RC, Clark MA, Osborn JC. Proc. Sci. LATTICE2011030 2011.)
    [Google Scholar]
  75. 75.
    Yamaguchi A, Boyle P. Proc. Sci. LATTICE2016374 2016.)
    [Google Scholar]
  76. 76.
    Brower RC, Clark MA, Howarth D, Weinberg ES. Phys. Rev. D 102:094517 2020.)
    [Google Scholar]
  77. 77.
    Boyle P, Yamaguchi A. arXiv:2103.05034 [hep-lat] 2021.)
  78. 78.
    Renner DB et al. Nucl. Phys. B Proc. Suppl. 140:255 2005.)
    [Google Scholar]
  79. 79.
    Bär O, Rupak G, Shoresh N. Phys. Rev. D 67:114505 2003.)
    [Google Scholar]
  80. 80.
    Bär O, Bernard C, Rupak G, Shoresh N. Phys. Rev. D 72:054502 2005.)
    [Google Scholar]
  81. 81.
    Tiburzi BC. Phys. Rev. D 72:094501 2005. Erratum Phys. Rev. D 79:039904 2009.)
    [Google Scholar]
  82. 82.
    Chen JW, O'Connell D, Walker-Loud A. J. High Energy Phys. 0904:090 2009.)
    [Google Scholar]
  83. 83.
    Lepage GP. From Actions to Answers: Proceedings of the 1989 Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 1989) T Degrand, D Toussaint 97–120 Singapore: World Scientific 1989.)
    [Google Scholar]
  84. 84.
    Martinelli G, Sachrajda CT. Nucl. Phys. B 316:355 1989.)
    [Google Scholar]
  85. 85.
    Foster M, Michael C. Phys. Rev. D 59:074503 1999.)
    [Google Scholar]
  86. 86.
    McNeile C, Michael C. Phys. Rev. D 73:074506 2006.)
    [Google Scholar]
  87. 87.
    Alexandrou C et al. Eur. Phys. J. C 74:2692 2014.)
    [Google Scholar]
  88. 88.
    Chambers AJ et al. Phys. Rev. D 90:014510 2014.)
    [Google Scholar]
  89. 89.
    Alexandrou C et al. Phys. Rev. D 102:054517 2020.)
    [Google Scholar]
  90. 90.
    He J et al. arXiv:2104.05226 [hep-lat] 2021.)
  91. 91.
    Bali GS, Lang B, Musch BU, Schäfer A. Phys. Rev. D 93:094515 2016.)
    [Google Scholar]
  92. 92.
    Stokes FM et al. Phys. Rev. D 92:114506 2015.)
    [Google Scholar]
  93. 93.
    Stokes FM, Kamleh W, Leinweber DB. Phys. Rev. D 99:074506 2019.)
    [Google Scholar]
  94. 94.
    Stokes FM, Kamleh W, Leinweber DB. Phys. Rev. D 102:014507 2020.)
    [Google Scholar]
  95. 95.
    Gupta R et al. Phys. Rev. Lett. 127:242002 2021.)
    [Google Scholar]
  96. 96.
    Maiani L, Martinelli G, Paciello ML, Taglienti B. Nucl. Phys. B 293:420 1987.)
    [Google Scholar]
  97. 97.
    de Divitiis GM, Petronzio R, Tantalo N. Phys. Lett. B 718:589 2012.)
    [Google Scholar]
  98. 98.
    Bouchard C et al. Phys. Rev. D 96:014504 2017.)
    [Google Scholar]
  99. 99.
    Capitani S et al. Phys. Rev. D 86:074502 2012.)
    [Google Scholar]
  100. 100.
    Gambhir AS et al. Proc. Sci. LATTICE2018:126 2019.)
    [Google Scholar]
  101. 101.
    Sasaki S, Yamazaki T. Phys. Rev. D 78:014510 2008.)
    [Google Scholar]
  102. 102.
    Gupta R et al. Phys. Rev. D 96:114503 2017.)
    [Google Scholar]
  103. 103.
    Bali GS et al. Phys. Lett. B 789:666 2019.)
    [Google Scholar]
  104. 104.
    Bär O. Phys. Rev. D 99:054506 2019.)
    [Google Scholar]
  105. 105.
    Bär O. Phys. Rev. D 94:054505 2016.)
    [Google Scholar]
  106. 106.
    Bali GS et al. Phys. Rev. D 91:054501 2015.)
    [Google Scholar]
  107. 107.
    Blossier B et al. J. High Energy Phys. 0904:094 2009.)
    [Google Scholar]
  108. 108.
    Bhattacharya B, Hill RJ, Paz G. Phys. Rev. D 84:073006 2011.)
    [Google Scholar]
  109. 109.
    Hasan N et al. Phys. Rev. D 97:034504 2018.)
    [Google Scholar]
  110. 110.
    Ishikawa KI et al. Phys. Rev. D 104:074514 2021.)
    [Google Scholar]
  111. 111.
    Meyer AS et al. arXiv:2111.06333 [hep-lat] 2021.)
  112. 112.
    Bazavov A et al. Phys. Rev. D 87:054505 2013.)
    [Google Scholar]
  113. 113.
    Meyer AS et al. Proc. Sci. LATTICE2016:179 2016.)
    [Google Scholar]
  114. 114.
    Lin Y et al. Phys. Rev. D 103:054510 2021.)
    [Google Scholar]
  115. 115.
    Gasser J, Leutwyler H. Nucl. Phys. B 250:465 1985.)
    [Google Scholar]
  116. 116.
    Jenkins EE, Manohar AV. Phys. Lett. B 255:558 1991.)
    [Google Scholar]
  117. 117.
    Bernard V, Kaiser N, Meissner UG. Int. J. Mod. Phys. E 4:193 1995.)
    [Google Scholar]
  118. 118.
    Sharpe SR, Singleton RL Jr. Phys. Rev. D 58:074501 1998.)
    [Google Scholar]
  119. 119.
    Beane SR. Nucl. Phys. B 695:192 2004.)
    [Google Scholar]
  120. 120.
    Walker-Loud A et al. Phys. Rev. D 79:054502 2009.)
    [Google Scholar]
  121. 121.
    Drischler C et al. Prog. Part. Nucl. Phys. 121:103888 2021.)
    [Google Scholar]
  122. 122.
    Okubo S. Phys. Rev. D 3:2807 1971.)
    [Google Scholar]
  123. 123.
    Green JR et al. Phys. Rev. D 90:074507 2014.)
    [Google Scholar]
  124. 124.
    Balog J, Niedermayer F, Weisz P. Phys. Lett. B 676:188 2009.)
    [Google Scholar]
  125. 125.
    Balog J, Niedermayer F, Weisz P. Nucl. Phys. B 824:563 2010.)
    [Google Scholar]
  126. 126.
    Husung N, Marquard P, Sommer R. Eur. Phys. J. C 80:200 2020.)
    [Google Scholar]
  127. 127.
    Gasser J, Leutwyler H. Phys. Lett. B 184:83 1987.)
    [Google Scholar]
  128. 128.
    Aguilar-Arevalo A et al. Phys. Rev. D 103:052002 2021.)
    [Google Scholar]
  129. 129.
    Abe K et al. Phys. Rev. D 96:092006 2017.)
    [Google Scholar]
  130. 130.
    Abe K et al. Nature 580:339 2020. Erratum Nature 583:E16 2020.)
    [Google Scholar]
  131. 131.
    Abe K et al. Phys. Rev. D 103:112008 2021.)
    [Google Scholar]
  132. 132.
    Andreopoulos C et al. Nucl. Instrum. Meth. A 614:87 2010.)
    [Google Scholar]
  133. 133.
    Alvarez-Ruso L et al. Eur. Phys. J. Special Top. 230:4449 2021.)
    [Google Scholar]
  134. 134.
    Tena-Vidal J et al. Phys. Rev. D 104:072009 2021.)
    [Google Scholar]
  135. 135.
    Abe K et al. Phys. Rev. D 87:012001 2013.)
    [Google Scholar]
  136. 136.
    Esteban I et al. Nufit 5.0. Software Package http://www.nu-fit.org 2020.)
    [Google Scholar]
  137. 137.
    Abi B et al. arXiv:2002.03005 [hep-ex] 2020.)
  138. 138.
    Abi B et al. Eur. Phys. J. C 80:978 2020.)
    [Google Scholar]
  139. 139.
    Acero MA et al. arXiv:2108.08219 [hep-ex] 2021.)
  140. 140.
    Abud AA et al. arXiv:2109.01304 [hep-ex] 2021.)
  141. 141.
    M, Giusti L, Schaefer S. Phys. Rev. D 93:094507 2016.)
    [Google Scholar]
  142. 142.
    Peardon M et al. Phys. Rev. D 80:054506 2009.)
    [Google Scholar]
  143. 143.
    Morningstar C et al. Phys. Rev. D 83:114505 2011.)
    [Google Scholar]
  144. 144.
    Dudek JJ, Edwards RG, Thomas CE. Phys. Rev. D 87:034505 2013. Erratum Phys. Rev. D 90:099902 2014.)
    [Google Scholar]
  145. 145.
    Lang CB, Verduci V. Phys. Rev. D 87:054502 2013.)
    [Google Scholar]
  146. 146.
    Meyer AS. The nucleon axial form factor and staggered lattice QCD PhD Thesis Univ. Chicago 2017.)
    [Google Scholar]
  147. 147.
    Egerer C, Richards D, Winter F. Phys. Rev. D 99:034506 2019.)
    [Google Scholar]
  148. 148.
    Barca L, Bali GS, Collins S. arXiv:2110.11908 [hep-lat] 2021.)
  149. 149.
    Hansen MT, Meyer HB, Robaina D. Phys. Rev. D 96:094513 2017.)
    [Google Scholar]
  150. 150.
    Gambino P, Hashimoto S. Phys. Rev. Lett. 125:032001 2020.)
    [Google Scholar]
  151. 151.
    Fukaya H, Hashimoto S, Kaneko T, Ohki H. Phys. Rev. D 102:114516 2020.)
    [Google Scholar]
  152. 152.
    Bruno M, Hansen MT. J. High Energy Phys. 2106:43 2021.)
    [Google Scholar]
  153. 153.
    Liu KF, Dong SJ. Phys. Rev. Lett. 72:1790 1994.)
    [Google Scholar]
  154. 154.
    Liang J et al. Phys. Rev. D 101:114503 2020.)
    [Google Scholar]
  155. 155.
    Savage MJ et al. Phys. Rev. Lett. 119:062002 2017.)
    [Google Scholar]
  156. 156.
    Chang E et al. Phys. Rev. Lett. 120:152002 2018.)
    [Google Scholar]
  157. 157.
    Francis A et al. Phys. Rev. D 99:074505 2019.)
    [Google Scholar]
  158. 158.
    Hörz B et al. Phys. Rev. C 103:014003 2021.)
    [Google Scholar]
  159. 159.
    Green JR, Hanlon AD, Junnarkar PM, Wittig H. Phys. Rev. Lett. 127:242003 2021.)
    [Google Scholar]
  160. 160.
    Amarasinghe S et al. arXiv:2108.10835 [hep-lat] 2021.)
  161. 161.
    Kronfeld AS et al. Eur. Phys. J. A 55:196 2019.)
    [Google Scholar]
  162. 162.
    Tews I et al. J. Phys. G 47:103001 2020.)
    [Google Scholar]
  163. 163.
    Davoudi Z et al. Phys. Rep. 900:1 2021.)
    [Google Scholar]
  164. 164.
    Djukanovic Det al arXiv:2207.03440 [hep-lat] (2022)
/content/journals/10.1146/annurev-nucl-010622-120608
Loading
/content/journals/10.1146/annurev-nucl-010622-120608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error