1932

Abstract

Hardware-based track reconstruction in the CMS and ATLAS trigger systems for the high-luminosity upgrade of the LHC (HL-LHC) will provide unique capabilities. In this review, we present an overview of earlier track trigger systems at hadron colliders, in particular those at the Tevatron CDF and DØ experiments. We discuss the plans of the CMS and ATLAS experiments to implement hardware-based track reconstruction for the HL-LHC. Particular focus is placed on the track trigger capability of the upgraded CMS experiment. We discuss the challenges and opportunities of this novel capability, review the alternatives that were considered for its implementation, and discuss its expected performance. The planned track trigger systems for CMS and ATLAS have different goals, and we compare and contrast the two approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-020420-093547
2020-10-19
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/nucl/70/1/annurev-nucl-020420-093547.html?itemId=/content/journals/10.1146/annurev-nucl-020420-093547&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brüning O et al. LHC design report Tech. Rep. CERN-2004-003, CERN, Geneva 2004.
    [Google Scholar]
  2. 2. 
    Evans L, Bryant P. J. Instrum. 3:S08001 2008.
    [Google Scholar]
  3. 3. 
    Aad G, et al. (ATLAS Collab.) J. Instrum. 3:S08003 2008.
    [Google Scholar]
  4. 4. 
    Chatrchyan S, et al. (CMS Collab.) J. Instrum. 3:S08004 2008.
    [Google Scholar]
  5. 5. 
    Zimmermann F. Proc. Sci. EPS-HEP 2009140 2009.
    [Google Scholar]
  6. 6. 
    Apollinari G et al. High-Luminosity Large Hadron Collider (HL-LHC): technical design report V.0.1 Tech. Rep. CYRM-2017-004, CERN, Geneva 2017.
    [Google Scholar]
  7. 7. 
    ATLAS Collab. Letter of intent for the Phase-II upgrade of the ATLAS experiment Tech. Rep. CERN-LHCC-2012-022/LHCC-I-023, CERN, Geneva 2012.
    [Google Scholar]
  8. 8. 
    ATLAS Collab ATLAS Phase-II upgrade scoping document Tech. Rep. CERN-LHCC-2015-020/LHCC-G-166, CERN, Geneva 2015.
    [Google Scholar]
  9. 9. 
    Contardo D et al. Technical proposal for the Phase-2 upgrade of the CMS detector Tech. Rep. CERN-LHCC-2015-010, CERN, Geneva 2015.
    [Google Scholar]
  10. 10. 
    Butler J et al. CMS Phase II upgrade scope document Tech. Rep. CERN-LHCC-2015-019/LHCC-G-165, CERN, Geneva 2015.
    [Google Scholar]
  11. 11. 
    Dainese A et al. Report on the physics at the HL-LHC and perspectives for the HE-LHC Tech. Rep. CYRM-2019-007, CERN, Geneva 2019.
    [Google Scholar]
  12. 12. 
    Aaboud M Eur. Phys. J. C 77:317 2017.
    [Google Scholar]
  13. 13. 
    Khachatryan V J. Instrum. 12:P01020 2017.
    [Google Scholar]
  14. 14. 
    Zabi A et al. The Phase-2 upgrade of the CMS Level-1 trigger Tech. Rep. CERN-LHCC-2020-004, CERN, Geneva 2020.
    [Google Scholar]
  15. 15. 
    Klein K The Phase-2 upgrade of the CMS tracker Tech. Rep. CERN-LHCC-2017-009, CERN, Geneva 2017.
    [Google Scholar]
  16. 16. 
    Bediaga I et al. LHCb trigger and online upgrade technical design report Tech. Rep. CERN-LHCC-2014-016/LHCB-TDR-016, CERN, Geneva 2014.
    [Google Scholar]
  17. 17. 
    Bailey S, et al. Nucl. Instrum. Methods A 518:544 2004.
    [Google Scholar]
  18. 18. 
    Iwasaki Y, et al. IEEE Trans. Nucl. Sci. 58:1807 2011.
    [Google Scholar]
  19. 19. 
    Gerndt EKE, Xella S. Nucl. Instrum. Methods A 446:264 2000.
    [Google Scholar]
  20. 20. 
    Adelman J, et al. Nucl. Instr. Methods A 572:361 2007.
    [Google Scholar]
  21. 21. 
    Olsen J, et al. IEEE Trans. Nucl. Sci. 51:345 2004.
    [Google Scholar]
  22. 22. 
    Shochet M et al. Fast TracKer (FTK) technical design report Tech. Rep. CERN-LHCC-2013-007/ATLAS-TDR-021, CERN, Geneva 2013.
    [Google Scholar]
  23. 23. 
    Thomson EJ, et al. IEEE Trans. Nucl. Sci. 49:1063 2002.
    [Google Scholar]
  24. 24. 
    Holm S, et al. IEEE Trans. Nucl. Sci. 47:895 2000.
    [Google Scholar]
  25. 25. 
    Dell'Orso M, Ristori L. Nucl. Instrum. Methods A 287:436 1990.
    [Google Scholar]
  26. 26. 
    Abolins M, et al. IEEE Trans. Nucl. Sci. 51:340 2004.
    [Google Scholar]
  27. 27. 
    Adams T et al.arXiv:physics/0701195 [physics.ins-det] 2007.
  28. 28. 
    Sottocornola S. Frascati Phys. Ser. 67:41 2018.
    [Google Scholar]
  29. 29. 
    Ceresa D, et al. Proc. Sci. TWEPP2018:166 2019.
    [Google Scholar]
  30. 30. 
    Prydderch ML, et al. Proc. Sci. TWEPP-17:001 2018.
    [Google Scholar]
  31. 31. 
    Nodari B, et al. Proc. Sci. TWEPP2018:099 2019.
    [Google Scholar]
  32. 32. 
    Mendez JM, Baron S, Kulis S, Fonseca J. Proc. Sci. TWEPP2018:059 2019.
    [Google Scholar]
  33. 33. 
    Brooke J, Cavanaugh R The Phase-2 upgrade of the CMS L1 trigger interim technical design report Tech. Rep. CERN-LHCC-2017-013, CERN, Geneva 2017.
    [Google Scholar]
  34. 34. 
    Sirunyan AM, et al. (CMS Collab.) J. Instrum. 12:P10003 2017.
    [Google Scholar]
  35. 35. 
    Svetek A, et al. J. Instrum. 11:C02011 2016.
    [Google Scholar]
  36. 36. 
    Bartz E, et al. J. Instrum. 15:P06024 2020.
    [Google Scholar]
  37. 37. 
    Hough PVC Method and means for recognizing complex patterns US Patent 3,069,654 1962.
    [Google Scholar]
  38. 38. 
    Aggleton R, et al. J. Instrum. 12:P12019 2017.
    [Google Scholar]
  39. 39. 
    Billoir P, Qian S. Nucl. Instrum. Methods A 294:219 1990.
    [Google Scholar]
  40. 40. 
    Compton K, et al. J. Instrum. 7:C12024 2012.
    [Google Scholar]
  41. 41. 
    Clement E, et al. Nucl. Instrum. Methods A 935:95 2019.
    [Google Scholar]
  42. 42. 
    Ahuja S et al. A full mesh ATCA-based general purpose data processing board (Pulsar II) Tech. Rep. FERMILAB-TM-2650-E, Fermilab, Batavia, IL 2017.
    [Google Scholar]
  43. 43. 
    Annovi A, et al. J. Instrum. 12:C04013 2017.
    [Google Scholar]
  44. 44. 
    Albert A, et al. Proc. Sci. TWEPP2019:120 2020.
    [Google Scholar]
  45. 45. 
    Rose A, et al. Proc. Sci. TWEPP2018:115 2019.
    [Google Scholar]
  46. 46. 
    Mendez J, et al. J. Instrum. 12:C03010 2017.
    [Google Scholar]
  47. 47. 
    Curtin D, et al. Rep. Progress Phys. 82:116201 2019.
    [Google Scholar]
  48. 48. 
    Gershtein Y. Phys. Rev. D 96:035027 2017.
    [Google Scholar]
  49. 49. 
    Gershtein Y, Knapen S. Phys. Rev. D 101:032003 2020.
    [Google Scholar]
  50. 50. 
    Cepeda M et al. arXiv:1902.00134 [hep-ph] 2019.
  51. 51. 
    Alimena J et al. arXiv:1903.04497 [hep-ex] 2019.
  52. 52. 
    James T. arXiv:1910.12668 [physics.ins-det] 2019.
  53. 53. 
    ATLAS Collab Technical design report for the ATLAS inner tracker strip detector Tech. Rep. CERN-LHCC-2017-005/ATLAS-TDR-025, CERN, Geneva 2017.
    [Google Scholar]
  54. 54. 
    ATLAS Collab Expected tracking performance of the ATLAS inner tracker and the HL-LHC Tech. Rep. ATL-PHYS-PUB-2019-014, CERN, Geneva 2019.
    [Google Scholar]
  55. 55. 
    ATLAS Collab Technical design report for the Phase-II upgrade of the ATLAS TDAQ system Tech. Rep. CERN-LHCC-2017-020/ATLAS-TDR-029, CERN, Geneva 2017.
    [Google Scholar]
  56. 56. 
    Mårtensson M, et al. J. Instrum. 14:P11009 2019.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-020420-093547
Loading
/content/journals/10.1146/annurev-nucl-020420-093547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error