1932

Abstract

Searches for dark matter–induced recoils have made impressive advances in the last few years. Yet the field is confronted by several outstanding problems. First, the inevitable background of solar neutrinos will soon inhibit the conclusive identification of many dark matter models. Second, and more fundamentally, current experiments have no practical way of confirming a detected signal's Galactic origin. The concept of directional detection addresses both of these issues while offering opportunities to study novel dark matter– and neutrino-related physics. The concept remains experimentally challenging, but gas time projection chambers are an increasingly attractive option and, when properly configured, would allow directional measurements of both nuclear and electron recoils. In this review, we reassess the required detector performance and survey relevant technologies. Fortuitously, the highly segmented detectors required to achieve good directionality also enable several fundamental and applied physics measurements. We comment on near-term challenges and how the field could be advanced.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-020821-035016
2021-09-21
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-020821-035016.html?itemId=/content/journals/10.1146/annurev-nucl-020821-035016&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Battaglieri M et al. U.S. Cosmic Visions: New Ideas in Dark Matter 2017 Community Rep. College Park, MD: https://authors.library.caltech.edu/104684/ 2017.
    [Google Scholar]
  2. 2. 
    Schumann M. J. Phys. G 46:103003 2019.
    [Google Scholar]
  3. 3. 
    Billard J, Strigari L, Figueroa-Feliciano E. Phys. Rev. D 89:023524 2014.
    [Google Scholar]
  4. 4. 
    Spergel DN. Phys. Rev. D 37:1353 1988.
    [Google Scholar]
  5. 5. 
    Kavanagh BJ. Phys. Rev. D 92:023513 2015.
    [Google Scholar]
  6. 6. 
    Catena R. J. Cosmol. Astropart. Phys. 1507:026 2015.
    [Google Scholar]
  7. 7. 
    O'Hare CAJ et al. Phys. Rev. D 101:023006 2020.
    [Google Scholar]
  8. 8. 
    Grothaus P, Fairbairn M, Monroe J Phys. Rev. D 90:055018 2014.
    [Google Scholar]
  9. 9. 
    O'Hare CAJ et al. Phys. Rev. D 92:063518 2015.
    [Google Scholar]
  10. 10. 
    Copi CJ, Heo J, Krauss LM. Phys. Lett. B 461:43 1999.
    [Google Scholar]
  11. 11. 
    Morgan B, Green AM, Spooner NJC. Phys. Rev. D 71:103507 2005.
    [Google Scholar]
  12. 12. 
    Billard J, Mayet F, Macias-Perez JF, Santos D Phys. Lett. B 691:156 2010.
    [Google Scholar]
  13. 13. 
    Green AM, Morgan B. Phys. Rev. D 81:061301 2010.
    [Google Scholar]
  14. 14. 
    Mayet F et al. Phys. Rep. 627:1 2016.
    [Google Scholar]
  15. 15. 
    Vahsen S et al. arXiv:2008.12587 [physics.ins-det] 2020.
  16. 16. 
    Marx J, Nygren D. Phys. Today 31:46 1978.
    [Google Scholar]
  17. 17. 
    Santos D et al. EAS Publ. Ser. 53:25 2012.
    [Google Scholar]
  18. 18. 
    Baracchini E et al. J. Instrum. 15:C07036 2020.
    [Google Scholar]
  19. 19. 
    Battat JBR et al. Astropart. Phys. 91:65 2017.
    [Google Scholar]
  20. 20. 
    Yakabe R et al. Prog. Theor. Exp. Phys. 2020:113F01 2020.
    [Google Scholar]
  21. 21. 
    Vahsen S et al. EAS Publ. Ser. 53:43 2012.
    [Google Scholar]
  22. 22. 
    Ahlen S et al. Int. J. Mod. Phys. A 25:1 2010.
    [Google Scholar]
  23. 23. 
    Battat JBR et al. Phys. Rep. 662:1 2016.
    [Google Scholar]
  24. 24. 
    Sciolla G, Martoff CJ. New J. Phys. 11:105018 2009.
    [Google Scholar]
  25. 25. 
    Kapteyn J. Astrophys. J. 55:302 1922.
    [Google Scholar]
  26. 26. 
    Zwicky F. Helv. Phys. Acta 6:110 1933.); Zwicky F. Gen. Relativ. Gravit. 41:207 2009.
    [Google Scholar]
  27. 27. 
    de Salas PF, Widmark A. arXiv:2012.11477 [astro-ph.GA] 2020.
  28. 28. 
    Bovy J. arXiv:2012.02169 [astro-ph.GA] 2020.
  29. 29. 
    Iorio G, Belokurov V. Mon. Not. R. Astron. Soc. 482:3868 2019.
    [Google Scholar]
  30. 30. 
    Bryan SE, Cress CM. Mon. Not. R. Astron. Soc. 380:657 2007.
    [Google Scholar]
  31. 31. 
    Valluri M, Price-Whelan AM, Snyder SJ. arXiv:2009.09004 [astro-ph.GA] 2020.
  32. 32. 
    Arcadi G et al. Eur. Phys. J. C 78:203 2018.
    [Google Scholar]
  33. 33. 
    Gondolo P. Phys. Rev. D 66:103513 2002.
    [Google Scholar]
  34. 34. 
    Fan J, Reece M, Wang LT J. Cosmol. Astropart. Phys. 1011:042 2010.
    [Google Scholar]
  35. 35. 
    Fitzpatrick A et al. J. Cosmol. Astropart. Phys. 02:004 2013.
    [Google Scholar]
  36. 36. 
    Anand N, Fitzpatrick AL, Haxton W. Phys. Rev. C 89:065501 2014.
    [Google Scholar]
  37. 37. 
    Mei D, Hime A. Phys. Rev. D 73:053004 2006.
    [Google Scholar]
  38. 38. 
    Copi CJ, Krauss LM. Phys. Rev. D 67:103507 2003.
    [Google Scholar]
  39. 39. 
    Billard J. Phys. Rev. D 91:023513 2015.
    [Google Scholar]
  40. 40. 
    Tucker-Smith D, Weiner N Phys. Rev. D 64:043502 2001.
    [Google Scholar]
  41. 41. 
    Eby J, Fox PJ, Harnik R, Kribs GD. J. High Energy Phys. 09:115 2019.
    [Google Scholar]
  42. 42. 
    Zurowski M, Barberio E, Busoni G. J. Cosmol. Astropart. Phys. 12:014 2020.
    [Google Scholar]
  43. 43. 
    Bramante J, Fox PJ, Kribs GD, Martin A. Phys. Rev. D 94:115026 2016.
    [Google Scholar]
  44. 44. 
    Finkbeiner DP, Lin T, Weiner N. Phys. Rev. D 80:115008 2009.
    [Google Scholar]
  45. 45. 
    Lisanti M, Wacker JG. Phys. Rev. D 81:096005 2010.
    [Google Scholar]
  46. 46. 
    Bramante J, Broerman B, Lang RF, Raj N Phys. Rev. D 98:083516 2018.
    [Google Scholar]
  47. 47. 
    Bramante J, Kumar J, Raj N Phys. Rev. D 100:123016 2019.
    [Google Scholar]
  48. 48. 
    Clark M et al. Phys. Rev. D 102:123026 2020.
    [Google Scholar]
  49. 49. 
    Feldstein B, Graham PW, Rajendran S. Phys. Rev. D 82:075019 2010.
    [Google Scholar]
  50. 50. 
    Bringmann T, Pospelov M. Phys. Rev. Lett. 122:171801 2019.
    [Google Scholar]
  51. 51. 
    Alvey J, Campos M, Fairbairn M, You T. Phys. Rev. Lett. 123:261802 2019.
    [Google Scholar]
  52. 52. 
    Dent JB, Dutta B, Newstead JL, Shoemaker IM. Phys. Rev. D 101:116007 2020.
    [Google Scholar]
  53. 53. 
    Guo G, Tsai YLS, Wu MR, Yuan Q. Phys. Rev. D 102:103004 2020.
    [Google Scholar]
  54. 54. 
    Dent JB et al. arXiv:2010.09749 [hep-ph] 2020.
  55. 55. 
    Baracchini E, Derocco W, Dho G. Phys. Rev. D 102:075036 2020.
    [Google Scholar]
  56. 56. 
    DeRocco W et al. Phys. Rev. D 100:075018 2019.
    [Google Scholar]
  57. 57. 
    An H, Pospelov M, Pradler J, Ritz A. Phys. Lett. B 747:331 2015.
    [Google Scholar]
  58. 58. 
    Jaeckel J, Ringwald A. Annu. Rev. Nucl. Part. Sci. 60:405 2010.
    [Google Scholar]
  59. 59. 
    Derevianko A, Dzuba VA, Flambaum VV, Pospelov M. Phys. Rev. D 82:065006 2010.
    [Google Scholar]
  60. 60. 
    Evans NW, O'Hare CAJ, McCabe C Phys. Rev. D 99:023012 2019.
    [Google Scholar]
  61. 61. 
    Lee SK, Peter AHG. J. Cosmol. Astropart. Phys. 1204:029 2012.
    [Google Scholar]
  62. 62. 
    O'Hare CAJ, Green AM Phys. Rev. D 90:123511 2014.
    [Google Scholar]
  63. 63. 
    Kavanagh BJ, O'Hare CAJ. Phys. Rev. D 94:123009 2016.
    [Google Scholar]
  64. 64. 
    Necib L, Lisanti M, Belokurov V. Astrophys. J. 874:3 2019.
    [Google Scholar]
  65. 65. 
    Bozorgnia N et al. J. Cosmol. Astropart. Phys. 07:036 2020.
    [Google Scholar]
  66. 66. 
    Necib L et al. Astrophys. J. 903:25 2020.
    [Google Scholar]
  67. 67. 
    Kruijssen JMD et al. Mon. Not. R. Astron. Soc. 486:3180 2019.
    [Google Scholar]
  68. 68. 
    Belokurov V et al. Mon. Not. R. Astron. Soc. 478:611 2018.
    [Google Scholar]
  69. 69. 
    Helmi A. Annu. Rev. Astron. Astrophys. 58:205 2020.
    [Google Scholar]
  70. 70. 
    Naidu RP et al. Astrophys. J. 901:48 2020.
    [Google Scholar]
  71. 71. 
    Brown AGA et al. Astron. Astrophys. 616:A1 2018.
    [Google Scholar]
  72. 72. 
    O'Hare CAJ et al. Phys. Rev. D 98:103006 2018.
    [Google Scholar]
  73. 73. 
    Adhikari P et al. Phys. Rev. D 102:082001 2020.
    [Google Scholar]
  74. 74. 
    Lang RF et al. Phys. Rev. D 94:103009 2016.
    [Google Scholar]
  75. 75. 
    Leyton M, Dye S, Monroe J Nat. Commun. 8:15989 2017.
    [Google Scholar]
  76. 76. 
    Tomas R et al. Phys. Rev. D 68:093013 2003.
    [Google Scholar]
  77. 77. 
    Akimov D et al. Science 357:1123 2017.
    [Google Scholar]
  78. 78. 
    Akimov D et al. Phys. Rev. Lett. 126:012002 2021.
    [Google Scholar]
  79. 79. 
    Vogel P, Engel J. Phys. Rev. D 39:3378 1989.
    [Google Scholar]
  80. 80. 
    Freedman DZ. Phys. Rev. D 9:1389 1974.
    [Google Scholar]
  81. 81. 
    Vinyoles N et al. Astrophys. J. 835:202 2017.
    [Google Scholar]
  82. 82. 
    Bergstrom J et al. J. High Energy Phys. 03:132 2016.
    [Google Scholar]
  83. 83. 
    Agostini M et al. Nature 587:577 2020.
    [Google Scholar]
  84. 84. 
    Villante F, Serenelli A Solar Neutrinos M Mayer, K Zuber 103 Singapore: World Sci 2019.
    [Google Scholar]
  85. 85. 
    Seguinot J, Ypsilantis T, Zichichi A. Conf. Proc. C 920310:289 1992.
    [Google Scholar]
  86. 86. 
    Arpesella C, Broggini C, Cattadori C. Astropart. Phys. 4:333 1996.
    [Google Scholar]
  87. 87. 
    Araki T et al. Nature 436:499 2005.
    [Google Scholar]
  88. 88. 
    Bellini G et al. Phys. Lett. B 687:299 2010.
    [Google Scholar]
  89. 89. 
    Davies JH, Davies DR. Solid Earth 1:5 2010.
    [Google Scholar]
  90. 90. 
    Gando A et al. Nat. Geogr. 4:647 2011.
    [Google Scholar]
  91. 91. 
    Mirizzi A, Raffelt GG, Serpico PD. J. Cosmol. Astropart. Phys. 0605:012 2006.
    [Google Scholar]
  92. 92. 
    Al Kharusi S et al. New J. Phys. 23:031201 2021.
    [Google Scholar]
  93. 93. 
    Aristizabal Sierra D et al. arXiv:2103.10857 [hep-ph] 2021.
  94. 94. 
    Brdar V et al. arXiv:2011.07054 [hep-ph] 2020.
  95. 95. 
    Dent JB et al. Phys. Rev. Lett. 124:211804 2020.
    [Google Scholar]
  96. 96. 
    Dutta B et al. Phys. Rev. Lett. 124:121802 2020.
    [Google Scholar]
  97. 97. 
    Abdullah M, Aristizabal Sierra D, Dutta B, Strigari LE Phys. Rev. D 102:015009 2020.
    [Google Scholar]
  98. 98. 
    Aristizabal Sierra D, Dutta B, Liao S, Strigari LE J. High Energy Phys. 12:124 2019.
    [Google Scholar]
  99. 99. 
    Cerdeño DG et al. J. High Energy Phys. 05:118 2016.). Erratum J. High Energy Phys. 09:048 2016.
    [Google Scholar]
  100. 100. 
    Bertuzzo E et al. J. High Energy Phys. 04:073 2017.
    [Google Scholar]
  101. 101. 
    Bœhm C et al. J. Cosmol. Astropart. Phys. 1901. 043: 2019.
    [Google Scholar]
  102. 102. 
    Aristizabal Sierra D, Rojas N, Tytgat M J. High Energy Phys. 03:197 2018.
    [Google Scholar]
  103. 103. 
    Boehm C et al. Phys. Rev. D 102:115013 2020.
    [Google Scholar]
  104. 104. 
    Jaegle I et al. Nucl. Instrum. Methods A 945:162296 2019.
    [Google Scholar]
  105. 105. 
    Lindhard J, Nielsen V, Scharff M, Thomsen PV. Mat. Fys. Medd. Dan. Vid. Selsk. 33:1 1963.
    [Google Scholar]
  106. 106. 
    Majewski P, Muna D, Snowden-Ifft D, Spooner N. Astropart. Phys. 34:284 2010.
    [Google Scholar]
  107. 107. 
    Deaconu C et al. Phys. Rev. D 95:122002 2017.
    [Google Scholar]
  108. 108. 
    Ziegler JF, Biersack P, Littmark U. The Stopping and Range of Ions in Solids. New York: Pergamon 1985.
    [Google Scholar]
  109. 109. 
    Oed A. Nucl. Instrum. Methods A 263:351 1988.
    [Google Scholar]
  110. 110. 
    Sauli F. Nucl. Instrum. Methods A 477:1 2002.
    [Google Scholar]
  111. 111. 
    Aguilar-Arevalo A et al. J. Instrum. 10:P08014 2015.
    [Google Scholar]
  112. 112. 
    Gorbunov SA, Konovalova NS. Phys. At. Nucl. 83:83 2020.
    [Google Scholar]
  113. 113. 
    Belli P et al. Eur. Phys. J. A 56:83 2020.
    [Google Scholar]
  114. 114. 
    Martoff CJ et al. Nucl. Instrum. Methods A 440:355 2000.
    [Google Scholar]
  115. 115. 
    Snowden-Ifft DP. Rev. Sci. Instrum. 85:013303 2014.
    [Google Scholar]
  116. 116. 
    Phan NS et al. J. Instrum. 12:P02012 2017.
    [Google Scholar]
  117. 117. 
    Battat JBR et al. Phys. Dark Univ. 9/10:1 2014.
    [Google Scholar]
  118. 118. 
    Lewis P et al. Nucl. Instrum. Methods A 789:81 2015.
    [Google Scholar]
  119. 119. 
    Buckland KN, Lehner MJ, Masek GE, Mojaver M. Phys. Rev. Lett. 73:1067 1994.
    [Google Scholar]
  120. 120. 
    Burgos H et al. Astropart. Phys. 28:409 2007.
    [Google Scholar]
  121. 121. 
    Battat JBR et al. J. Instrum. 11:P10019 2016.
    [Google Scholar]
  122. 122. 
    Battat JBR et al. J. Instrum. 9:P11004 2014.
    [Google Scholar]
  123. 123. 
    Battat JBR et al. Nucl. Instrum. Methods A 794:33 2015.
    [Google Scholar]
  124. 124. 
    Deaconu C. A model of the directional sensitivity of low-pressure CF4dark matter detectors PhD Thesis, MIT Cambridge, MA: 2015.
    [Google Scholar]
  125. 125. 
    Ahlen S et al. Phys. Lett. B 695:124 2011.
    [Google Scholar]
  126. 126. 
    Leyton M. J. Phys. Conf. Ser. 718:042035 2016.
    [Google Scholar]
  127. 127. 
    Thorpe TN. 2018. Gain resolution studies and first dark matter search with novel 3D nuclear recoil detectors. PhD Thesis, Univ. Hawaii Manoa: 2018.
    [Google Scholar]
  128. 128. 
    Ligtenberg C et al. Nucl. Instrum. Methods A 956:163331 2020.
    [Google Scholar]
  129. 129. 
    Köhli M et al. Physica B 551:517 2018.
    [Google Scholar]
  130. 130. 
    Vahsen SE. 2020. Paper presented at 65th Annual Meeting of the American Physical Society Washington, DC: April 18–21. https://meetings.aps.org/Meeting/APR20/Session/C13.3 2020.
  131. 131. 
    Deleted in proof
  132. 132. 
    Naka T et al. Nucl. Instrum. Methods A 718:519 2013.
    [Google Scholar]
  133. 133. 
    Rajendran S et al. Phys. Rev. D 96:035009 2017.
    [Google Scholar]
  134. 134. 
    Marshall MC et al. Quantum Sci. Technol. 6:024011 2021.
    [Google Scholar]
  135. 135. 
    Hochberg Y et al. Phys. Lett. B 772:239 2017.
    [Google Scholar]
  136. 136. 
    Betti MG et al. J. Cosmol. Astropart. Phys. 07:047 2019.
    [Google Scholar]
  137. 137. 
    Drukier A et al. arXiv:1206.6809 [astro-ph.IM] 2012.
  138. 138. 
    Shimizu Y, Minowa M, Sekiya H, Inoue Y. Nucl. Instrum. Methods A 496:347 2003.
    [Google Scholar]
  139. 139. 
    Cappella F et al. Eur. Phys. J. C 73:2276 2013.
    [Google Scholar]
  140. 140. 
    Sekiya H et al. Phys. Lett. B 571:132 2003.
    [Google Scholar]
  141. 141. 
    Nygren D. J. Phys. Conf. Ser. 460:012006 2013.
    [Google Scholar]
  142. 142. 
    Cao H et al. Phys. Rev. D 91:092007 2015.
    [Google Scholar]
  143. 143. 
    Aalseth CE et al. Eur. Phys. J. Plus 133:131 2018.
    [Google Scholar]
  144. 144. 
    Sanfilippo S et al. Nuovo Cim. C 42:79 2019.
    [Google Scholar]
  145. 145. 
    O'Hare CAJ. Phys. Rev. D 102:063024 2020.
    [Google Scholar]
  146. 146. 
    Vahsen S et al. Nucl. Instrum. Methods A 788:95 2015.
    [Google Scholar]
  147. 147. 
    Tao Y et al. Nucl. Instrum. Methods A 985:164569 2021.
    [Google Scholar]
  148. 148. 
    Ghrear M, Vahsen SE, Deaconu C. arXiv:2012.13649 [physics.ins-det] 2020.
  149. 149. 
    Sorensen P et al. Nucl. Instrum. Methods A 686:106 2012.
    [Google Scholar]
  150. 150. 
    O'Hare CAJ, Kavanagh BJ, Green AM. Phys. Rev. D 96:083011 2017.
    [Google Scholar]
  151. 151. 
    Lenardo BG et al. Phys. Rev. Lett. 123:231106 2019.
    [Google Scholar]
  152. 152. 
    Billard J, Mayet F, Santos D. Phys. Rev. D 85:035006 2012.
    [Google Scholar]
  153. 153. 
    Baur G, Rosel F, Trautmann D. J. Phys. B 16:L419 1983.
    [Google Scholar]
  154. 154. 
    Vegh L. J. Phys. B 16:4175 1983.
    [Google Scholar]
  155. 155. 
    Ruijgrok TW, Nijboer BRA, Hoare MR. Phys. Stat. Mech. Appl. 120:537 1983.
    [Google Scholar]
  156. 156. 
    Vergados JD, Ejiri H. Phys. Lett. B 606:313 2005.
    [Google Scholar]
  157. 157. 
    Sharma P. Nucl. Phys. A 968:326 2017.
    [Google Scholar]
  158. 158. 
    Ibe M, Nakano W, Shoji Y, Suzuki K. J. High Energy Phys. 03:194 2018.
    [Google Scholar]
  159. 159. 
    Kouvaris C, Pradler J. Phys. Rev. Lett. 118:031803 2017.
    [Google Scholar]
  160. 160. 
    McCabe C. Phys. Rev. D 96:043010 2017.
    [Google Scholar]
  161. 161. 
    Dolan MJ, Kahlhoefer F, McCabe C. Phys. Rev. Lett. 121:101801 2018.
    [Google Scholar]
  162. 162. 
    Armengaud E et al. Phys. Rev. D 99:082003 2019.
    [Google Scholar]
  163. 163. 
    Aprile E et al. Phys. Rev. Lett. 123:241803 2019.
    [Google Scholar]
  164. 164. 
    Liu CP, Wu CP, Chi HC, Chen JW. Phys. Rev. D 102:121303 2020.
    [Google Scholar]
  165. 165. 
    Liang ZL, Mo C, Zheng F, Zhang P. arXiv:2011.13352 [hep-ph] 2020.
  166. 166. 
    Rapaport MS, Asaro F, Perlmant I. Phys. Rev 11:1740 1975.
    [Google Scholar]
  167. 167. 
    Couratin C et al. Phys. Rev. Lett. 108:243201 2012.
    [Google Scholar]
  168. 168. 
    Fabian X. Phys. Rev. A 97:023402 2018.
    [Google Scholar]
  169. 169. 
    Majewski P et al. Slides presented at RD-51 Mini-Week, CERN Geneva: Jan. 10–15. https://indico.cern.ch/event/872501/contributions/3730586/ 2020.
  170. 170. 
    Phan N, Lee E, Loomba D J. Instrum. 15:P05012 2020.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-020821-035016
Loading
/content/journals/10.1146/annurev-nucl-020821-035016
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error