1932

Abstract

The quark–gluon plasma (QGP) produced by collisions between ultrarelativistic heavy nuclei is well described in the language of hydrodynamics. Noncentral collisions are characterized by very large angular momentum, which in a fluid system manifests as flow vorticity. This rotational structure can lead to a spin polarization of the hadrons that eventually emerge from the plasma, and thus these collisions provide experimental access to flow substructure at unprecedented detail. Recently, the first observations of Λ hyperon polarization along the direction of collisional angular momentum were reported. These measurements are in broad agreement with hydrodynamic and transport-based calculations and reveal that the QGP is the most vortical fluid ever observed. However, there remain important tensions between theory and observation that might be fundamental in nature. In the relatively mature field of heavy-ion physics, the discovery of global hyperon polarization and 3D simulations of the collision have opened an entirely new direction of research. We discuss the current status of this rapidly developing area and directions for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-021920-095245
2020-10-19
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/nucl/70/1/annurev-nucl-021920-095245.html?itemId=/content/journals/10.1146/annurev-nucl-021920-095245&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Shuryak EV. Phys. Rep. 61:71 1980.
    [Google Scholar]
  2. 2. 
    Adams J et al. Nucl. Phys. A 757:102 2005.
    [Google Scholar]
  3. 3. 
    Adcox K et al. Nucl. Phys. A 757:184 2005.
    [Google Scholar]
  4. 4. 
    Back BB et al. Nucl. Phys. A 757:28 2005.
    [Google Scholar]
  5. 5. 
    Arsene I et al. Nucl. Phys. A 757:1 2005.
    [Google Scholar]
  6. 6. 
    Heinz U, Snellings R Annu. Rev. Nucl. Part. Sci. 63:123 2013.
    [Google Scholar]
  7. 7. 
    Adamczyk L et al. Nature 548:62 2017.
    [Google Scholar]
  8. 8. 
    Aoki Y et al. Nature 443:675 2006.
    [Google Scholar]
  9. 9. 
    Aoki Y, Fodor Z, Katz SD, Szabo KK Phys. Lett. B 643:46 2006.
    [Google Scholar]
  10. 10. 
    Becattini F, Fries R. The QCD confinement transition: hadron formation Relativistic Heavy Ion Physics ed. R Stock. Landolt-Börnstein—Group I Elementary Particles, Nuclei and Atoms Vol. 23. Berlin: Springer. https://materials.springer.com/lb/docs/sm_lbs_978-3-642-01539-7_8 2010.
    [Google Scholar]
  11. 11. 
    Cooper F, Frye G Phys. Rev. D 10:186 1974.
    [Google Scholar]
  12. 12. 
    Becattini F et al. Eur. Phys. J. C 75:406 (2015). Erratum. Eur. Phys. J. C 78:354 2018.
    [Google Scholar]
  13. 13. 
    Kovtun P, Son DT, Starinets AO Phys. Rev. Lett. 94:111601 2005.
    [Google Scholar]
  14. 14. 
    Niemi H, Denicol GS. arXiv:1404.7327 [nucl-th] 2014.
  15. 15. 
    Barnett SJ Phys. Rev. 6:239 1915.
    [Google Scholar]
  16. 16. 
    Einstein A, de Haas WJ K. Ned. Akad. Wet. Proc. Ser. B Phys. Sci. 18:696 1915.
    [Google Scholar]
  17. 17. 
    Tsang MB et al. Phys. Rev. Lett. 57:559 1986.
    [Google Scholar]
  18. 18. 
    Lemmon RC et al. Phys. Lett. B 446:197 1999.
    [Google Scholar]
  19. 19. 
    Takahashi M et al. Nat. Phys. 12:52 2016.
    [Google Scholar]
  20. 20. 
    Saitoh E, Ueda M, Miyajima H Appl. Phys. Lett. 88:182509 2006.
    [Google Scholar]
  21. 21. 
    Westfall GD et al. Phys. Rev. Lett. 37:1202 1976.
    [Google Scholar]
  22. 22. 
    Poskanzer AM, Voloshin SA Phys. Rev. C 58:1671 1998.
    [Google Scholar]
  23. 23. 
    Miller ML, Reygers K, Sanders SJ, Steinberg P Annu. Rev. Nucl. Part. Sci. 57:205 2007.
    [Google Scholar]
  24. 24. 
    Liang ZT, Wang XN Phys. Rev. Lett. 94:102301 (2005). Erratum. Phys. Rev. Lett. 96:039901 2006.
    [Google Scholar]
  25. 25. 
    Gao JH et al. Phys. Rev. C 77:044902 2008.
    [Google Scholar]
  26. 26. 
    Abelev BI et al. Phys. Rev. C 76:024915 (2007). Erratum. Phys. Rev. C 95:039906 2017.
    [Google Scholar]
  27. 27. 
    Becattini F, Piccinini F et al. J. Phys. G 35:054001 2008.
    [Google Scholar]
  28. 28. 
    Betz B, Gyulassy M, Torrieri G Phys. Rev. C 76:044901 2007.
    [Google Scholar]
  29. 29. 
    Becattini F, Piccinini F Ann. Phys. 323:2452 2008.
    [Google Scholar]
  30. 30. 
    Becattini F, Chandra V, Del Zanna L, Grossi E Ann. Phys. 338:32 2013.
    [Google Scholar]
  31. 31. 
    Becattini F, Csernai L, Wang DJ Phys. Rev. C 88:034905 (2013). Erratum. Phys. Rev. C 93:069901 2016.
    [Google Scholar]
  32. 32. 
    Landau LD, Lifshitz EM. Course of Theoretical Physics 5 Oxford, UK: Butterworth-Heinemann 1980.
    [Google Scholar]
  33. 33. 
    Becattini F Phys. Rev. Lett. 108:244502 2012.
    [Google Scholar]
  34. 34. 
    Becattini F, Grossi E Phys. Rev. D 92:045037 2015.
    [Google Scholar]
  35. 35. 
    Becattini F, Cao G, Speranza E Eur. Phys. J. C 79:741 2019.
    [Google Scholar]
  36. 36. 
    Tung WK. Group Theory in Physics Singapore: World Scientific 1985.
    [Google Scholar]
  37. 37. 
    Becattini F et al. Phys. Rev. C 95:054902 2017.
    [Google Scholar]
  38. 38. 
    Fang R, Pang L, Wang Q, Wang X Phys. Rev. C 94:024904 2016.
    [Google Scholar]
  39. 39. 
    Hattori K et al. Phys. Lett. B 795:100 2019.
    [Google Scholar]
  40. 40. 
    Israel W Ann. Phys. 100:310 1976.
    [Google Scholar]
  41. 41. 
    Zubarev DN, Prozorkevich AV, Smolyanskii SA Theor. Math. Phys. 40:821 1979.
    [Google Scholar]
  42. 42. 
    Bhadury S et al. arXiv:2002.03937 [hep-ph] 2020.
  43. 43. 
    Csernai LP, Magas VK, Wang DJ Phys. Rev. C 87:034906 2013.
    [Google Scholar]
  44. 44. 
    Del Zanna L et al. Eur. Phys. J. C 73:2524 2013.
    [Google Scholar]
  45. 45. 
    Bozek P, Wyskiel I Phys. Rev. C 81:054902 2010.
    [Google Scholar]
  46. 46. 
    Karpenko I, Huovinen P, Bleicher M Comput. Phys. Commun. 185:3016 2014.
    [Google Scholar]
  47. 47. 
    Pang LG, Petersen H, Wang XN Phys. Rev. C 97:064918 2018.
    [Google Scholar]
  48. 48. 
    Lin ZW et al. Phys. Rev. C 72:064901 2005.
    [Google Scholar]
  49. 49. 
    Wheaton S, Cleymans J Comput. Phys. Commun. 180:84 2009.
    [Google Scholar]
  50. 50. 
    Karpenko I, Becattini F Eur. Phys. J. C 77:213 2017.
    [Google Scholar]
  51. 51. 
    Xia XL, Li H, Huang XG, Huang HZ Phys. Rev. C 100:014913 2019.
    [Google Scholar]
  52. 52. 
    Voloshin SA. arXiv:nucl-th/0410089 [nucl-th] 2004.
  53. 53. 
    Barros CC Jr., Hama Y Int. J. Mod. Phys. E 17:371 2008.
    [Google Scholar]
  54. 54. 
    Barros CC Jr., Hama Y Phys. Lett. B 699:74 2011.
    [Google Scholar]
  55. 55. 
    Kapusta JI, Rrapaj E, Rudaz S Phys. Rev. C 101:024907 2020.
    [Google Scholar]
  56. 56. 
    De Groot SR, Van Leeuwen WA, Van Weert CG. Relativistic Kinetic Theory: Principles and Applications Amsterdam: North-Holland 1980.
    [Google Scholar]
  57. 57. 
    Fukushima K, Kharzeev DE, Warringa HJ Phys. Rev. D 78:074033 2008.
    [Google Scholar]
  58. 58. 
    Li W, Wang G. Annu. Rev. Nucl. Part. Sci. 70:293 2020.
    [Google Scholar]
  59. 59. 
    Wang Z, Guo X, Shi S, Zhuang P Phys. Rev. D 100:014015 2019.
    [Google Scholar]
  60. 60. 
    Hattori K, Hidaka Y, Yang DL Phys. Rev. D 100:096011 2019.
    [Google Scholar]
  61. 61. 
    Gao JH, Liang ZT Phys. Rev. D 100:056021 2019.
    [Google Scholar]
  62. 62. 
    Weickgenannt N et al. Phys. Rev. D 100:056018 2019.
    [Google Scholar]
  63. 63. 
    Yang DL, Hattori K, Hidaka Y. arXiv:2002.02612 [hep-ph] 2020.
  64. 64. 
    Zhang J, Fang R, Wang Q, Wang XN Phys. Rev. C 100:064904 2019.
    [Google Scholar]
  65. 65. 
    Li S, Yee HU Phys. Rev. D 100:056022 2019.
    [Google Scholar]
  66. 66. 
    Zhang JJ et al. arXiv:1912.04457 [hep-ph] 2019.
  67. 67. 
    Leader E, Lorcé C Phys. Rep. 541:163 2014.
    [Google Scholar]
  68. 68. 
    Becattini F, Florkowski W, Speranza E Phys. Lett. B 789:419 2019.
    [Google Scholar]
  69. 69. 
    Hehl FW Rep. Math. Phys. 9:55 1976.
    [Google Scholar]
  70. 70. 
    Florkowski W et al. Phys. Rev. D 97:116017 2018.
    [Google Scholar]
  71. 71. 
    Florkowski W, Ryblewski R, Kumar A Prog. Part. Nucl. Phys. 108:103709 2019.
    [Google Scholar]
  72. 72. 
    Florkowski W, Kumar A, Ryblewski R. arXiv:1907.09835 [nucl-th] 2019.
  73. 73. 
    Florkowski W, Friman B, Jaiswal A, Speranza E Phys. Rev. C 97:041901 2018.
    [Google Scholar]
  74. 74. 
    Florkowski W, Kumar A, Ryblewski R, Singh R Phys. Rev. C 99:044910 2019.
    [Google Scholar]
  75. 75. 
    Guo Y, Shi S, Feng S, Liao J Phys. Lett. B 798:134929 2019.
    [Google Scholar]
  76. 76. 
    Kharzeev D, Pisarski RD, Tytgat MHG Phys. Rev. Lett. 81:512 1998.
    [Google Scholar]
  77. 77. 
    Jinnouchi O et al. AIP Conf. Proc. 675:817 2003. [Czech. J. Phys. 53:B409 (2003)]
    [Google Scholar]
  78. 78. 
    Anderson M et al. Nucl. Instrum. Meth. A 499:659 2003.
    [Google Scholar]
  79. 79. 
    Lee TD, Yang CN Phys. Rev. 108:1645 1957.
    [Google Scholar]
  80. 80. 
    Tanabashi M et al. Phys. Rev. D 98:030001 2018.
    [Google Scholar]
  81. 81. 
    Adam J et al. Phys. Rev. C 98:014910 2018.
    [Google Scholar]
  82. 82. 
    Adam J et al. Phys. Rev. Lett. 123:132301 2019.
    [Google Scholar]
  83. 83. 
    Acharya S et al. Phys. Rev. C 101:044611 2020.
    [Google Scholar]
  84. 84. 
    Ablikim M et al. Nat. Phys. 15:631 2019.
    [Google Scholar]
  85. 85. 
    Zyla P et al. Prog. Theor. Exp. Phys. 2020:083C01 2020.
    [Google Scholar]
  86. 86. 
    Braun-Munzinger P, Magestro D, Redlich K, Stachel J Phys. Lett. B 518:41 2001.
    [Google Scholar]
  87. 87. 
    Leader E. Spin in Particle Physics Cambridge, UK: Cambridge Univ. Press 2001.
    [Google Scholar]
  88. 88. 
    Schilling K, Seyboth P, Wolf GE Nucl. Phys. B 15:397 (1970). Erratum. Nucl. Phys. B 18:332 1970.
    [Google Scholar]
  89. 89. 
    Li H, Pang LG, Wang Q, Xia XL Phys. Rev. C 96:054908 2017.
    [Google Scholar]
  90. 90. 
    Vitiuk O, Bravina LV, Zabrodin EE Phys. Lett. B 803:135298 2020.
    [Google Scholar]
  91. 91. 
    Sun Y, Ko CM Phys. Rev. C 96:024906 2017.
    [Google Scholar]
  92. 92. 
    Ivanov YB, Toneev VD, Soldatov AA Phys. Rev. C 100:014908 2019.
    [Google Scholar]
  93. 93. 
    Upsal I. Global polarization of in STAR BES PhD Diss., Ohio State Univ., Columbus 2018.
    [Google Scholar]
  94. 94. 
    Lan S, Lin ZW, Shi S, Sun X Phys. Lett. B 780:319 2018.
    [Google Scholar]
  95. 95. 
    Adams J et al. Nucl. Instrum. Meth. A 968:163970 2020.
    [Google Scholar]
  96. 96. 
    Jiang Y, Lin ZW, Liao J Phys. Rev. C 94:044910 (2016). Erratum. Phys. Rev. C 95:049904 2017.
    [Google Scholar]
  97. 97. 
    Baznat MI, Gudima KK, Sorin AS, Teryaev OV Phys. Rev. C 93:031902 2016.
    [Google Scholar]
  98. 98. 
    Xie Y, Wang D, Csernai LP Phys. Rev. C 95:031901 2017.
    [Google Scholar]
  99. 99. 
    Deng WT, Huang XG Phys. Rev. C 93:064907 2016.
    [Google Scholar]
  100. 100. 
    Xia XL, Li H, Tang ZB, Wang Q Phys. Rev. C 98:024905 2018.
    [Google Scholar]
  101. 101. 
    Wei DX, Deng WT, Huang XG Phys. Rev. C 99:014905 2019.
    [Google Scholar]
  102. 102. 
    Wu HZ, Pang LG, Huang XG, Wang Q Phys. Rev. Res. 1:033058 2019.
    [Google Scholar]
  103. 103. 
    Csernai LP, Wang DJ, Bleicher M, Stocker H Phys. Rev. C 90:021904 2014.
    [Google Scholar]
  104. 104. 
    Pang LG, Petersen H, Wang Q, Wang XN Phys. Rev. Lett. 117:192301 2016.
    [Google Scholar]
  105. 105. 
    Adamczyk L et al. Phys. Rev. Lett. 120:062301 2018.
    [Google Scholar]
  106. 106. 
    Csernai LP, Strottman DD, Anderlik C Phys. Rev. C 85:054901 2012.
    [Google Scholar]
  107. 107. 
    Ivanov YB, Soldatov AA Phys. Rev. C 91:024915 2015.
    [Google Scholar]
  108. 108. 
    Bunce G et al. Phys. Rev. Lett. 36:1113 1976.
    [Google Scholar]
  109. 109. 
    Heller KJ et al. Phys. Rev. Lett. 41:607 (1978). Erratum. Phys. Rev. Lett. 45:1043 1980.
    [Google Scholar]
  110. 110. 
    Becattini F, Karpenko I Phys. Rev. Lett. 120:012302 2018.
    [Google Scholar]
  111. 111. 
    Niida T Nucl. Phys. A 982:511 2019.
    [Google Scholar]
  112. 112. 
    Xie YL et al. Phys. Rev. C 94:054907 2016.
    [Google Scholar]
  113. 113. 
    Xie Y, Wang D, Csernai LP Eur. Phys. J. C 80:39 2020.
    [Google Scholar]
  114. 114. 
    Magas VK, Csernai LP, Strottman D Nucl. Phys. A 712:167 2002.
    [Google Scholar]
  115. 115. 
    Florkowski W, Kumar A, Ryblewski R, Mazeliauskas A Phys. Rev. C 100:054907 2019.
    [Google Scholar]
  116. 116. 
    Liu SYF, Sun Y, Ko CM. arXiv:1910.06774 [nucl-th] 2019.
  117. 117. 
    McLerran L, Skokov V Nucl. Phys. A 929:184 2014.
    [Google Scholar]
  118. 118. 
    Guo X, Liao J, Wang E Sci. Rep. 10:2196 2020.
    [Google Scholar]
  119. 119. 
    Skokov V, Illarionov AY, Toneev V Int. J. Mod. Phys. A 24:5925 2009.
    [Google Scholar]
  120. 120. 
    Inghirami G et al. Eur. Phys. J. C 76:659 2016.
    [Google Scholar]
  121. 121. 
    Inghirami G et al. Eur. Phys. J. C 80:293 2020.
    [Google Scholar]
  122. 122. 
    Müller B, Schäfer A Phys. Rev. D 98:071902 2018.
    [Google Scholar]
  123. 123. 
    Aggarwal M et al. arXiv:1007.2613 [nucl-ex] 2010.
  124. 124. 
    Han ZZ, Xu J Phys. Lett. B 786:255 2018.
    [Google Scholar]
  125. 125. 
    Csernai LP, Kapusta JI, Welle T Phys. Rev. C 99:021901 2019.
    [Google Scholar]
  126. 126. 
    Xie Y, Chen G, Csernai LP. arXiv:1912.00209 [hep-ph] 2019.
  127. 127. 
    Singha S. arXiv:2002.07427 [nucl-ex] 2020.
  128. 128. 
    Kundu S. Spin alignment measurements of vector mesons with ALICE at the LHC Paper presented at Quark Matter 2019, Wuhan, China, Nov. 4–9 2019.
    [Google Scholar]
  129. 129. 
    Liang ZT, Wang XN Phys. Lett. B 629:20 2005.
    [Google Scholar]
  130. 130. 
    Sheng XL, Oliva L, Wang Q Phys. Rev. D 101:096005 2020.
    [Google Scholar]
  131. 131. 
    Wang DJ, Néda Z, Csernai LP Phys. Rev. C 87:024908 2013.
    [Google Scholar]
  132. 132. 
    Karpenko I, Becattini F Nucl. Phys. A 982:519 2019.
    [Google Scholar]
  133. 133. 
    Montenegro D, Torrieri G Phys. Rev. D 100:056011 2019.
    [Google Scholar]
  134. 134. 
    Kolomeitsev EE, Toneev VD, Voronyuk V Phys. Rev. C 97:064902 2018.
    [Google Scholar]
  135. 135. 
    Deng XG, Huang XG, Ma YG, Zhang S. arXiv:2001.01371 [nucl-th] 2020.
  136. 136. 
    Nara Y, Stoecker H Phys. Rev. C 100:054902 2019.
    [Google Scholar]
  137. 137. 
    Adamczyk L et al. Phys. Rev. Lett. 112:162301 2014.
    [Google Scholar]
  138. 138. 
    Dunlop JC, Lisa MA, Sorensen P Phys. Rev. C 84:044914 2011.
    [Google Scholar]
  139. 139. 
    Kekelidze V et al. Nucl. Phys. A 967:884 2017.
    [Google Scholar]
  140. 140. 
    Golovatyuk V et al. Nucl. Phys. A 982:963 2019.
    [Google Scholar]
  141. 141. 
    Schmidt HR J. Phys. Conf. Ser. 509:012084 2014.
    [Google Scholar]
  142. 142. 
    Meehan K Nucl. Phys. A 967:808 2017.
    [Google Scholar]
  143. 143. 
    Agakishiev G et al. Eur. Phys. J. A 41:243 2009.
    [Google Scholar]
  144. 144. 
    Brodsky SJ, Gunion JF, Kuhn JH Phys. Rev. Lett. 39:1120 1977.
    [Google Scholar]
  145. 145. 
    Liang ZT et al. arXiv:1912.10223 [nucl-th] 2019.
  146. 146. 
    Ivanov YB, Soldatov AA Phys. Rev. C 95:054915 2017.
    [Google Scholar]
  147. 147. 
    Ivanov YB, Soldatov AA Phys. Rev. C 97:044915 2018.
    [Google Scholar]
  148. 148. 
    Alves AA Jr. et al. J. Instrum. 3:S08005 2008.
    [Google Scholar]
  149. 149. 
    Voloshin SA. arXiv:1710.08934 [nucl-ex] 2017. Voloshin SA. EPJ Web Conf. 17:10700 2018.
  150. 150. 
    Majumder A, Van Leeuwen M Prog. Part. Nucl. Phys. 66:41 2011.
    [Google Scholar]
  151. 151. 
    Tachibana Y et al. arXiv:2002.12250 [nucl-th] 2020.
  152. 152. 
    Floerchinger S, Wiedemann UA J. High Energy Phys. 1111:100 2011.
    [Google Scholar]
  153. 153. 
    Csernai LP, Becattini F, Wang DJ J. Phys. Conf. Ser. 509:012054 2014.
    [Google Scholar]
  154. 154. 
    Shi S, Li K, Liao J Phys. Lett. B 788:409 2019.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-021920-095245
Loading
/content/journals/10.1146/annurev-nucl-021920-095245
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error