1932

Abstract

The interplay of quantum anomalies with strong magnetic fields and vorticity in chiral systems could lead to novel transport phenomena, such as the chiral magnetic effect (CME), the chiral magnetic wave (CMW), and the chiral vortical effect (CVE). In high-energy nuclear collisions, these chiral effects may survive the expansion of a quark–gluon plasma fireball and be detected in experiments. The experimental searches for the CME, the CMW, and the CVE have aroused extensive interest over the past couple of decades. The main goal of this article is to review the latest experimental progress in the search for these novel chiral transport phenomena at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. Future programs to help reduce uncertainties and facilitate the interpretation of the data are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-030220-065203
2020-10-19
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/nucl/70/1/annurev-nucl-030220-065203.html?itemId=/content/journals/10.1146/annurev-nucl-030220-065203&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kharzeev D. Phys. Lett. B 633:260 2006.
    [Google Scholar]
  2. 2. 
    Kharzeev DE, McLerran LD, Warringa HJ. Nucl. Phys. A 803:227 2008.
    [Google Scholar]
  3. 3. 
    Li Q et al. Nat. Phys. 12:550 2016.
    [Google Scholar]
  4. 4. 
    Xiong J et al. Science 350:413 2015.
    [Google Scholar]
  5. 5. 
    Huang X et al. Phys. Rev. X 5:031023 2015.
    [Google Scholar]
  6. 6. 
    Shekhar C et al. Nat. Commun. 7:11615 2016.
    [Google Scholar]
  7. 7. 
    Adams J et al. Nucl. Phys. A 757:102 2005.
    [Google Scholar]
  8. 8. 
    Adcox K et al. Nucl. Phys. A 757:184 2005.
    [Google Scholar]
  9. 9. 
    Back BB et al. Nucl. Phys. A 757:28 2005.
    [Google Scholar]
  10. 10. 
    Arsene I et al. Nucl. Phys. A 757:1 2005.
    [Google Scholar]
  11. 11. 
    Adler SL. Phys. Rev. 177:2426 1969.
    [Google Scholar]
  12. 12. 
    Bell JS, Jackiw R. Nuovo Cim. A 60:47 1969.
    [Google Scholar]
  13. 13. 
    Kharzeev D, Zhitnitsky A. Nucl. Phys. A 797:67 2007.
    [Google Scholar]
  14. 14. 
    Kharzeev D, Krasnitz A, Venugopalan R. Phys. Lett. B 545:298 2002.
    [Google Scholar]
  15. 15. 
    Iatrakis I, Lin S, Yin Y. Phys. Rev. Lett. 114:252301 2015.
    [Google Scholar]
  16. 16. 
    Fukushima K, Kharzeev DE, Warringa HJ. Phys. Rev. Lett. 104:212001 2010.
    [Google Scholar]
  17. 17. 
    Heinz U, Snellings R. Annu. Rev. Nucl. Part. Sci. 63:123 2013.
    [Google Scholar]
  18. 18. 
    Son DT, Zhitnitsky AR. Phys. Rev. D 70:074018 2004.
    [Google Scholar]
  19. 19. 
    Metlitski MA, Zhitnitsky AR. Phys. Rev. D 72:045011 2005.
    [Google Scholar]
  20. 20. 
    Kharzeev DE, Liao J, Voloshin SA, Wang G. Prog. Part. Nucl. Phys. 88:1 2016.
    [Google Scholar]
  21. 21. 
    Burnier Y, Kharzeev DE, Liao J, Yee H-U. Phys. Rev. Lett. 107:052303 2011.
    [Google Scholar]
  22. 22. 
    Newman GM. J. High Energy Phys. 0601:158 2006.
    [Google Scholar]
  23. 23. 
    Kharzeev DE, Son DT. Phys. Rev. Lett. 106:062301 2011.
    [Google Scholar]
  24. 24. 
    Huang XG, Liao J. Phys. Rev. Lett. 110:232302 2013.
    [Google Scholar]
  25. 25. 
    Jiang Y, Huang XG, Liao J. Phys. Rev. D 91:045001 2015.
    [Google Scholar]
  26. 26. 
    Jiang Y, Huang XG, Liao J. Phys. Rev. D 92:071501 2015.
    [Google Scholar]
  27. 27. 
    Bzdak A, Skokov V. Phys. Lett. B 710:171 2012.
    [Google Scholar]
  28. 28. 
    Deng WT, Huang XG. Phys. Rev. C 85:044907 (2012); Deng WT, Huang XG. Phys. Lett. B 742:296 2015.
    [Google Scholar]
  29. 29. 
    Bloczynski J, Huang XG, Zhang X, Liao J. Phys. Lett. B 718:1529 2013.
    [Google Scholar]
  30. 30. 
    McLerran L, Skokov V. Nucl. Phys. A 929:184 2014.
    [Google Scholar]
  31. 31. 
    Guo X et al. Phys. Lett. B 751:215 2015.
    [Google Scholar]
  32. 32. 
    Gürsoy U, Kharzeev D, Rajagopal K. Phys. Rev. C 89:054905 2014.
    [Google Scholar]
  33. 33. 
    Tuchin K. Adv. High Energy Phys. 2013:490495 2013.
    [Google Scholar]
  34. 34. 
    Astrakhantsev NY et al.arXiv:1910.08516 [hep-lat] 2019.
  35. 35. 
    Hirono Y, Hongo M, Hirano T. Phys. Rev. C 90:021903 2014.
    [Google Scholar]
  36. 36. 
    Voronyuk V, Toneev VD, Voloshin SA, Cassing W. Phys. Rev. C 90:064903 2014.
    [Google Scholar]
  37. 37. 
    Adamczyk L et al. Phys. Rev. Lett. 118:012301 2017.
    [Google Scholar]
  38. 38. 
    Abelev BI et al. Phys. Rev. Lett. 101:252301 2008.
    [Google Scholar]
  39. 39. 
    Das SK et al. Phys. Lett. B 768:260 2017.
    [Google Scholar]
  40. 40. 
    Gürsoy U et al. Phys. Rev. C 98:055201 2018.
    [Google Scholar]
  41. 41. 
    Jiang Y, Lin ZW, Liao J. Phys. Rev. C 94:044910 2016.
    [Google Scholar]
  42. 42. 
    Baznat MI, Gudima KK, Sorin AS, Teryaev OV. Phys. Rev. C 93:031902 2016.
    [Google Scholar]
  43. 43. 
    Becattini F et al. Eur. Phys. J. C 75:406 2015.
    [Google Scholar]
  44. 44. 
    Becattini F, Csernai L, Wang DJ. Phys. Rev. C 88:034905 2013.
    [Google Scholar]
  45. 45. 
    Floerchinger S, Wiedemann UA. J. High Energy Phys. 1111:100 2011.
    [Google Scholar]
  46. 46. 
    Gao JH, Qi B, Wang SY. Phys. Rev. D 90:083001 2014.
    [Google Scholar]
  47. 47. 
    Adamczyk L et al. Nature 548:62 2017.
    [Google Scholar]
  48. 48. 
    Becattini F, Lisa MA. Annu. Rev. Nucl. Part. Sci. 70:395 2020.
    [Google Scholar]
  49. 49. 
    STAR Collab. Studying the phase diagram of QCD matter at RHIC STAR Note 0598, STAR Collab., Brookhaven Natl. Lab., Upton, NY. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598 2014.
    [Google Scholar]
  50. 50. 
    Tang AH, Wang G. Phys. Rev. C 94:024920 2016.
    [Google Scholar]
  51. 51. 
    Hirono Y, Kharzeev DE, Yin Y. Phys. Rev. D 92:125031 2015.
    [Google Scholar]
  52. 52. 
    Ipp A, Di Piazza A, Evers J, Keitel CH. Phys. Lett. B 666:315 2008.
    [Google Scholar]
  53. 53. 
    Mamo KA, Yee H-U. Phys. Rev. D 88:114029 2013.
    [Google Scholar]
  54. 54. 
    Mamo KA, Yee H-U. Phys. Rev. D 93:065053 2016.
    [Google Scholar]
  55. 55. 
    Liang Z-T, Wang X-N. Phys. Rev. Lett. 94:102301 2005.
    [Google Scholar]
  56. 56. 
    Baznat M, Gudima K, Sorin A, Teryaev O. Phys. Rev. C 88:061901 2013.
    [Google Scholar]
  57. 57. 
    Deng W-T, Huang X-G. Phys. Rev. C 93:064907 2016.
    [Google Scholar]
  58. 58. 
    Ye YJ, Ma YG, Tang AH, Wang G. Phys. Rev. C 99:044901 2019.
    [Google Scholar]
  59. 59. 
    Abelev BI et al. Phys. Rev. Lett. 103:251601 2009.
    [Google Scholar]
  60. 60. 
    Abelev BI et al. Phys. Rev. C 81:54908 2010.
    [Google Scholar]
  61. 61. 
    Adamczyk L et al. Phys. Rev. C 88:064911 2013.
    [Google Scholar]
  62. 62. 
    Adamczyk L et al. Phys. Rev. C 89:044908 2014.
    [Google Scholar]
  63. 63. 
    Adamczyk L et al. Phys. Rev. Lett. 113:052302 2014.
    [Google Scholar]
  64. 64. 
    Adam J et al. Phys. Lett. B 798:134975 2019.
    [Google Scholar]
  65. 65. 
    Wang G. Nucl. Phys A 904–905:248c 2013.
    [Google Scholar]
  66. 66. 
    Tribedy P. Nucl. Phys. A 967:740 2017.
    [Google Scholar]
  67. 67. 
    Zhao J. Nucl. Phys A 982:535 2019.
    [Google Scholar]
  68. 68. 
    Lacey RA, Voloshin S, Esumi S, Ajitanand NN. Azimuthal charge-asymmetry measurements at RHIC “a la PHENIX.” In Proceedings of RIKEN BNL Research Center Workshop: P- and CP-Odd Effects in Hot and Dense Matter, pp. 37–42. Upton, NY: Brookhaven Natl. Lab. (2010); Lacey RA. Musings on present and future azimuthal charge-asymmetry measurements. In Proceedings of RIKEN BNL Research Center Workshop: P- and CP-Odd Effects in Hot and Dense Matter, pp. 225–30. Upton, NY: Brookhaven Natl. Lab. 2010.
  69. 69. 
    Ajitanand NN, Lacey RA, Taranenko A, Alexander JM. Phys. Rev. C 83:011901(R) 2011.
    [Google Scholar]
  70. 70. 
    Abelev BI et al. Phys. Rev. Lett. 110:012301 2013.
    [Google Scholar]
  71. 71. 
    Khachatryan V et al. Phys. Rev. Lett. 118:122301 2017.
    [Google Scholar]
  72. 72. 
    Sirunyan AM et al. Phys. Rev. C 97:044912 2018.
    [Google Scholar]
  73. 73. 
    Voloshin SA. Phys. Rev. C 70:057901 2004.
    [Google Scholar]
  74. 74. 
    Magdy N et al. Phys. Rev. C 97:061901 2018.
    [Google Scholar]
  75. 75. 
    Tang AH. Chin. Phys. C 44:054101 2020.
    [Google Scholar]
  76. 76. 
    Ray RL, Longacre RS. arXiv:nucl-ex/0008009 2000.
  77. 77. 
    Wang F. Phys. Rev. C 81:064902 2010.
    [Google Scholar]
  78. 78. 
    Schlichting S, Pratt S. Phys. Rev. C 83:014913 2011.
    [Google Scholar]
  79. 79. 
    Pratt S, Schlichting S, Gavin S. Phys. Rev. C 84:024909 2011.
    [Google Scholar]
  80. 80. 
    Bzdak A, Koch V, Liao J. Lect. Notes Phys. 871:503 2013.
    [Google Scholar]
  81. 81. 
    Alver B et al. Phys. Rev. C 83:024913 2011.
    [Google Scholar]
  82. 82. 
    Back BB et al.(PHOBOS Collab.) Phys. Rev. C 72:051901(R) 2005.
  83. 83. 
    Zhang B, Ko CM, Li B-A, Lin Z-W. Phys. Rev. C 61:067901 2000.
    [Google Scholar]
  84. 84. 
    Lin Z-W, Ko CM, Li B-A, Zhang B. Phys. Rev. C 72:064901 2005.
    [Google Scholar]
  85. 85. 
    Lin Z-W, Ko CM. Phys. Rev. C 65:034904 2002.
    [Google Scholar]
  86. 86. 
    Choudhury S et al.arXiv:1909.04083 [hep-ph] 2019.
  87. 87. 
    Tu Z. Nucl. Phys. A 982:50 2019.
    [Google Scholar]
  88. 88. 
    Dusling K, Li W, Schenke B. Int. J. Mod. Phys. E 25:1630002 2016.
    [Google Scholar]
  89. 89. 
    Nagle JL, Zajc WA. Annu. Rev. Nucl. Part. Sci. 68:211 2018.
    [Google Scholar]
  90. 90. 
    Schukraft J, Timmins A, Voloshin SA. Phys. Lett. B 719:394 2013.
    [Google Scholar]
  91. 91. 
    Acharya S et al. Phys. Lett. B 777:151 2018.
    [Google Scholar]
  92. 92. 
    Wang F, Zhao J. Phys. Rev. C 95:051901 2017.
    [Google Scholar]
  93. 93. 
    Wen F, Bryon J, Wen L, Wang G. Chin. Phys. C 42:014001 2018.
    [Google Scholar]
  94. 94. 
    Xu H et al. Chin. Phys. C 42:084103 2018.
    [Google Scholar]
  95. 95. 
    Voloshin SA. Phys. Rev. C 98:054911 2018.
    [Google Scholar]
  96. 96. 
    Xu H-J et al. Chin. Phys. C 42:084103 2018.
    [Google Scholar]
  97. 97. 
    Li H, Zhao J, Wang F. Nucl. Phys. A 982:563 2019.
    [Google Scholar]
  98. 98. 
    Voloshin SA. Phys. Rev. Lett. 105:172301 2010.
    [Google Scholar]
  99. 99. 
    Deng W-T, Huang X-G, Ma G-L, Wang G. Phys. Rev. C 94:041901 2016.
    [Google Scholar]
  100. 100. 
    Raman S, Nestor CWG Jr., Tikkanen P. At. Data Nucl. Data Tables 78:1 2001.
    [Google Scholar]
  101. 101. 
    Pritychenko B, Birch M, Singh B, Horoi M. At. Data Nucl. Data Tables 107:1 2016.
    [Google Scholar]
  102. 102. 
    Moller P, Nix JR, Myers WD, Swiatecki WJ. At. Data Nucl. Data Tables 59:185 1995.
    [Google Scholar]
  103. 103. 
    Deng W-T, Huang X-G, Ma G-L, Wang G. Phys. Rev. C 97:044901 2018.
    [Google Scholar]
  104. 104. 
    Sun Y, Ko CM. Phys. Rev. C 98:014911 2018.
    [Google Scholar]
  105. 105. 
    Shi S, Zhang H, Hou D, Liao J. arXiv:1910.14010 [nucl-th] 2019.
  106. 106. 
    Xu H et al. Phys. Rev. Lett. 121:022301 2018.
    [Google Scholar]
  107. 107. 
    Li H et al.arXiv:1910.06170 [nucl-th] 2019.
  108. 108. 
    Hammelmann J et al.arXiv:1908.10231 [nucl-th] 2019.
  109. 109. 
    Shi S, Jiang Y, Lilleskov E, Liao J. Ann. Phys. 394:50 (2018); Jiang Y, Shi S, Yin Y, Liao J. Chin. Phys. C 42:011001 2018.
    [Google Scholar]
  110. 110. 
    Adams J et al. Nucl. Instrum. Meth. A 968:163970 2020.
    [Google Scholar]
  111. 111. 
    Adamczyk L et al. Phys. Rev. Lett. 114:252302 2015.
    [Google Scholar]
  112. 112. 
    Shou Q-Y. Nucl. Phys. A 931:758 2014.
    [Google Scholar]
  113. 113. 
    Shou Q-Y. Nucl. Phys. A 982:555 2019.
    [Google Scholar]
  114. 114. 
    Shou Q-Y. Search of the chiral magnetic wave with anisotropic flow of identified particles at RHIC Talk presented at Quark Matter 2018 Conference, Venice, Italy, May 13–19. https://indico.cern.ch/event/656452/contributions/2869771/attachments/1650216/2638892/qm18_star_cmw_talk.pdf 2018.
    [Google Scholar]
  115. 115. 
    Adam J et al. Phys. Rev. C 93:044903 2016.
    [Google Scholar]
  116. 116. 
    Sirunyan AM et al. Phys. Rev. C 100:064908 2019.
    [Google Scholar]
  117. 117. 
    Dunlop JC, Lisa MA, Sorensen P. Phys. Rev. C 84:044914 2011.
    [Google Scholar]
  118. 118. 
    Xu J, Chen L-W, Ko CM, Lin Z-W. Phys. Rev. C 85:041901 2012.
    [Google Scholar]
  119. 119. 
    Voloshin SA, Belmont R. Nucl. Phys. A 931:992 2014.
    [Google Scholar]
  120. 120. 
    Shen D et al. Phys. Rev. C 100:064907 2019.
    [Google Scholar]
  121. 121. 
    Hatta Y, Monnai A, Xiao BW. Nucl. Phys. A 947:155 2016.
    [Google Scholar]
  122. 122. 
    Bzdak A, Bożek P. Phys. Lett. B 726:239 2013.
    [Google Scholar]
  123. 123. 
    Bass SA et al. Prog. Part. Nucl. Phys. 41:255 1998.
    [Google Scholar]
  124. 124. 
    Burnier Y, Kharzeev DE, Liao J, Yee H-U. arXiv:1208.2537 [hep-ph] 2012.
  125. 125. 
    Campbell JM, Lisa MA. J. Phys. Conf. Ser. 446:012014 2013.
    [Google Scholar]
  126. 126. 
    Xu H, Zhao J, Feng Y, Wang F. Phys. Rev. C 101:014913 2020.
    [Google Scholar]
  127. 127. 
    Gorbar EV, Miransky VA, Shovkovy IA, Wang X. Phys. Rev. D 88:025025 2013.
    [Google Scholar]
  128. 128. 
    Zhao F. Nucl. Phys. A 931:746 2014.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-030220-065203
Loading
/content/journals/10.1146/annurev-nucl-030220-065203
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error