1932

Abstract

Ultraperipheral collisions (UPCs) of heavy ions and protons are the energy frontier for electromagnetic interactions. Both photonuclear and two-photon collisions are studied at collision energies that are far higher than those available elsewhere. In this review, we discuss physics topics that can be addressed with UPCs, including nuclear shadowing, nuclear structure, and searches for physics beyond the Standard Model.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-030320-033923
2020-10-19
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/nucl/70/1/annurev-nucl-030320-033923.html?itemId=/content/journals/10.1146/annurev-nucl-030320-033923&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bertulani CA, Baur G. Phys. Rep. 163:299 1988.
    [Google Scholar]
  2. 2. 
    Baur G et al. Phys. Rep. 364:359 2002.
    [Google Scholar]
  3. 3. 
    Bertulani CA, Klein SR, Nystrand J. Annu. Rev. Nucl. Part. Sci. 55:271 2005.
    [Google Scholar]
  4. 4. 
    Baltz AJ et al. Phys. Rep. 458:1 2008.
    [Google Scholar]
  5. 5. 
    Contreras JG, Tapia Takaki JD. Int. J. Mod. Phys. A 30:1542012 2015.
    [Google Scholar]
  6. 6. 
    Klein S, Nystrand J. Phys. Today 70:40 2017.
    [Google Scholar]
  7. 7. 
    Ahmad M et al.(CEPC-SPPC Study Group) CEPC-SPPC preliminary conceptual design report. Rep. IHEP-CEPC-DR-2015-01/IHEP-EP-2015-01/IHEP-TH-2015-01, Inst. High Energy Phys., Chin. Acad. Sci., Beijing 2015.
  8. 8. 
    Massacrier L, Lansberg JP, Szymanowski L, Wagner J. Quarkonium-photoproduction prospects at a fixed-target experiment at the LHC (AFTER@LHC) Proceedings of the PHOTON-2017 Conference ed. D d'Enterria, A de Roeck, M Mangano, pp. 163–68. Geneva: CERN. http://cds.cern.ch/record/2666846/files/fulltext1625748.pdf 2018.
    [Google Scholar]
  9. 9. 
    Papageorgiu E. Phys. Rev. D 40:92 1989.
    [Google Scholar]
  10. 10. 
    Cahn RN, Jackson JD. Phys. Rev. D 42:3690 1990.
    [Google Scholar]
  11. 11. 
    Klein S, Nystrand J. Phys. Rev. C 60:014903 1999.
    [Google Scholar]
  12. 12. 
    Adler C et al. Phys. Rev. Lett. 89:272302 2002.
    [Google Scholar]
  13. 13. 
    Klein SR et al. Comput. Phys. Commun. 212:258 2017.
    [Google Scholar]
  14. 14. 
    Harland-Lang LA, Khoze VA, Ryskin MG. Eur. Phys. J. C 79:39 2019.
    [Google Scholar]
  15. 15. 
    Helenius I. Proc. Sci. HardProbes2018:118 2018.
    [Google Scholar]
  16. 16. 
    Harrison S, Ludlam T, Ozaki S. Nucl. Instrum. Meth. A 499:235 2003.
    [Google Scholar]
  17. 17. 
    Citron Z et al. Report from Working Group 5: future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams. Physics at the HL-LHC, and Perspectives at the HE-LHC, ed. A Dainese, et al., pp. 1159–410. Geneva: CERN . https://e-publishing.cern.ch/index.php/CYRM/article/view/955/772 2019.
    [Google Scholar]
  18. 18. 
    Abada A et al. Eur. Phys. J. ST 228:755 2019.
    [Google Scholar]
  19. 19. 
    Montag C et al.eRHIC electron ring design status. In Proceedings of the 10th International Particle Accelerator Conference (IPAC2019), ed. M Boland,, H Tanaka,, D Button, pp. 794–96. Geneva: JACoW . http://accelconf.web.cern.ch/ipac2019/papers/moprb093.pdf 2019.
  20. 20. 
    Abelleira Fernandez JL et al. J. Phys. G 39:075001 2012.
    [Google Scholar]
  21. 21. 
    Klein SR, Nystrand J. Phys. Rev. Lett. 92:142003 2004.
    [Google Scholar]
  22. 22. 
    Fermi E. Z. Phys. 29:315 1924.
    [Google Scholar]
  23. 23. 
    von Weizsäcker CF. Z. Phys. 88:612 1934.
    [Google Scholar]
  24. 24. 
    Williams EJ. Kong. Dan. Vid. Sel. Mat. Fys. Med. 13N4:1 1935.
    [Google Scholar]
  25. 25. 
    Miller ML, Reygers K, Sanders SJ, Steinberg P. Annu. Rev. Nucl. Part. Sci. 57:205 2007.
    [Google Scholar]
  26. 26. 
    Drees M, Zeppenfeld D. Phys. Rev. D 39:2536 1989.
    [Google Scholar]
  27. 27. 
    Klein SR. Proc. Sci. DIS2018:047 2018.
    [Google Scholar]
  28. 28. 
    Baur G et al. Nucl. Phys. A 729:787 2003.
    [Google Scholar]
  29. 29. 
    Baltz AJ, Klein SR, Nystrand J. Phys. Rev. Lett. 89:012301 2002.
    [Google Scholar]
  30. 30. 
    Zha W et al. Phys. Rev. C 97:044910 2018.
    [Google Scholar]
  31. 31. 
    Vidovic M, Greiner M, Best C, Soff G. Phys. Rev. C 47:2308 1993.
    [Google Scholar]
  32. 32. 
    Vidovic M, Greiner M, Soff G. Phys. Rev. C 48:2011 1993.
    [Google Scholar]
  33. 33. 
    Zha W, Brandenburg JD, Tang Z, Xu Z. arXiv:1812.02820 [nucl-th] 2018.
  34. 34. 
    Adam J et al. Phys. Rev. Lett. 121:132301 2018.
    [Google Scholar]
  35. 35. 
    Aaboud M et al. Phys. Rev. Lett. 121:212301 2018.
    [Google Scholar]
  36. 36. 
    ATLAS Collab. Measurement of non-exclusive dimuon pairs produced via scattering in Pb+Pb collisions at = 5.02 TeV with the ATLAS detector Tech. Rep. ATLAS-CONF-2019-051, CERN, Geneva 2019.
    [Google Scholar]
  37. 37. 
    Nystrand J, Klein S. arXiv:nucl-ex/9811007 1998.
  38. 38. 
    Berman BL, Fultz SC. Rev. Mod. Phys. 47:713 1975.
    [Google Scholar]
  39. 39. 
    Baltz AJ, Rhoades-Brown MJ, Weneser J. Phys. Rev. E 54:4233 1996.
    [Google Scholar]
  40. 40. 
    Pshenichnov IA et al. Phys. Rev. C 64:024903 2001.
    [Google Scholar]
  41. 41. 
    Baltz AJ, Chasman C, White SN. Nucl. Instrum. Meth. A 417:1 1998.
    [Google Scholar]
  42. 42. 
    Adamczyk L et al.(STAR Collab.) Phys. Rev. C 96:054904 2017.
    [Google Scholar]
  43. 43. 
    Chiu M et al. Phys. Rev. Lett. 89:012302 2002.
    [Google Scholar]
  44. 44. 
    Abelev B et al. Phys. Rev. Lett. 109:252302 2012.
    [Google Scholar]
  45. 45. 
    Broz M, Contreras JG, Tapia Takaki JD. arXiv:1908.08263 [nucl-th] 2019.
  46. 46. 
    Klein SR, Mantysaari H. Nat. Rev. Phys. 1:662 2019.
    [Google Scholar]
  47. 46a. 
    ATLAS Collab Performance plots for pp and Pb+Pb collisions at . AtlasPublic Web https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/HION-2015-001/ (2015)
    [Google Scholar]
  48. 47. 
    ATLAS Collab. Photo-nuclear dijet production in ultra-peripheral Pb+Pb collisions Tech. Rep. ATLAS-CONF-2017-011, CERN, Geneva 2017.
    [Google Scholar]
  49. 48. 
    Adeluyi A, Bertulani CA. Phys. Rev. C 85:044904 2012.
    [Google Scholar]
  50. 49. 
    Klein SR, Nystrand J, Vogt R. Phys. Rev. C 66:044906 2002.
    [Google Scholar]
  51. 50. 
    Gonçalves VP, Sampaio dos Santos G, Sena CR. Nucl. Phys. A 976:33 2018.
    [Google Scholar]
  52. 51. 
    Strikman M, Vogt R, White SN. Phys. Rev. Lett. 96:082001 2006.
    [Google Scholar]
  53. 52. 
    Klein SR, Nystrand J, Vogt R. Eur. Phys. J. C 21:563 2001.
    [Google Scholar]
  54. 53. 
    Gonçalves VP. Phys. Rev. D 88:054025 2013.
    [Google Scholar]
  55. 54. 
    ATLAS Collab. Two-particle azimuthal correlations in photo-nuclear ultra-peripheral Pb+Pb collisions at 5.02 TeV with ATLAS ATLAS Note ATLAS-CONF-2019-022, CERN, Geneva 2019.
    [Google Scholar]
  56. 55. 
    Forshaw JR, Ross DA. Quantum Chromodynamics and the Pomeron Cambridge, UK: Cambridge Univ. Press 1997.
    [Google Scholar]
  57. 56. 
    Sirunyan AM et al. Eur. Phys. J. C 79:277 2019.
    [Google Scholar]
  58. 57. 
    Sirunyan AM et al. Eur. Phys. J. C 79:702 2019.
    [Google Scholar]
  59. 58. 
    Acharya S et al. Eur. Phys. J. C 79:402 2019.
    [Google Scholar]
  60. 59. 
    LHCb Collab. Central exclusive production of and mesons in pp collisions at = 13 TeV LHCb Note LHCb-CONF-2016-007/CERN-LHCb-CONF-2016-007, CERN, Geneva 2016.
    [Google Scholar]
  61. 60. 
    Contreras JG. Phys. Rev. C 96:015203 2017.
    [Google Scholar]
  62. 61. 
    Klein SR, Nystrand J. Phys. Rev. Lett. 84:2330 2000.
    [Google Scholar]
  63. 62. 
    Abelev BI et al. Phys. Rev. Lett. 102:112301 2009.
    [Google Scholar]
  64. 63. 
    Klein SR, Nystrand J. Phys. Lett. A 308:323 2003.
    [Google Scholar]
  65. 64. 
    Bauer TH, Spital RD, Yennie DR, Pipkin FM. Rev. Mod. Phys. 50:261 (1978). Erratum: Rev. Mod. Phys. 51:407 1979.
    [Google Scholar]
  66. 65. 
    Abramowicz H, Caldwell A. Rev. Mod. Phys. 71:1275 1999.
    [Google Scholar]
  67. 66. 
    Jones SP, Martin AD, Ryskin MG, Teubner T. J. High Energy Phys. 1311:85 2013.
    [Google Scholar]
  68. 67. 
    Collins JC, Frankfurt L, Strikman M. Phys. Lett. B 307:161 1993.
    [Google Scholar]
  69. 68. 
    Klein SR. Nucl. Phys. A 967:249 2017.
    [Google Scholar]
  70. 69. 
    Shuvaev AG, Golec-Biernat KJ, Martin AD, Ryskin MG. Phys. Rev. D 60:014015 1999.
    [Google Scholar]
  71. 70. 
    Flett CA et al.arXiv:1912.09128 [hep-ph] 2019.
  72. 71. 
    Jones SP, Martin AD, Ryskin MG, Teubner T. Eur. Phys. J. C 76:633 2016.
    [Google Scholar]
  73. 72. 
    Flett CA et al. Phys. Rev. D 101:094011 2020.
    [Google Scholar]
  74. 73. 
    Adam J. Proc. Sci. DIS2016:187 2016.
    [Google Scholar]
  75. 74. 
    McNulty R. Proc. Sci. DIS2016:181 2016.
    [Google Scholar]
  76. 75. 
    Frankfurt L, Strikman M, Zhalov M. Phys. Rev. C 67:034901 2003.
    [Google Scholar]
  77. 76. 
    Khachatryan V et al. Phys. Lett. B 772:489 2017.
    [Google Scholar]
  78. 77. 
    Guzey V, Zhalov M. J. High Energy Phys. 1310:207 2013.
    [Google Scholar]
  79. 78. 
    Frankfurt L, Guzey V, Strikman M. Phys. Rep. 512:255 2012.
    [Google Scholar]
  80. 79. 
    Abelev BI et al. Phys. Rev. C 77:034910 2008.
    [Google Scholar]
  81. 80. 
    Adam J et al. J. High Energy Phys. 1509:95 2015.
    [Google Scholar]
  82. 81. 
    Frankfurt L, Guzey V, Strikman M, Zhalov M. Phys. Lett. B 752:51 2016.
    [Google Scholar]
  83. 82. 
    Klein SR. Proc. Sci. DIS2016:188 2016.
    [Google Scholar]
  84. 83. 
    Abelev BI et al. Phys. Rev. C 81:044901 2010.
    [Google Scholar]
  85. 84. 
    Mayer C. Results (and future prospects) of the ALICE experiment in photon-induced collisions in Pb-Pb collisions Workshop presented at CERN, Geneva, June 2–6. https://indico.cern.ch/event/216417/contributions/1515422/ 2014.
    [Google Scholar]
  86. 85. 
    Good ML, Walker WD. Phys. Rev. 120:1857 1960.
    [Google Scholar]
  87. 86. 
    Kowalski H, Motyka L, Watt G. Phys. Rev. D 74:074016 2006.
    [Google Scholar]
  88. 87. 
    Rezaeian AH, Siddikov M, Van de Klundert M, Venugopalan R. Phys. Rev. D 87:034002 2013.
    [Google Scholar]
  89. 88. 
    Lappi T, Mantysaari H. Phys. Rev. C 87:032201 2013.
    [Google Scholar]
  90. 89. 
    Mantysaari H, Schenke B. Phys. Rev. D 94:034042 2016.
    [Google Scholar]
  91. 90. 
    Guzey V, Strikman M, Zhalov M. Phys. Rev. C 95:025204 2017.
    [Google Scholar]
  92. 91. 
    Emel'yanov V, Khodinov A, Klein SR, Vogt R. Phys. Rev. C 61:044904 2000.
    [Google Scholar]
  93. 92. 
    Acharya S et al. Phys. Lett. B 798:134926 2019.
    [Google Scholar]
  94. 93. 
    Luszczak A, Schaefer W. Phys. Rev. C 99:044905 2019.
    [Google Scholar]
  95. 94. 
    Burkardt M. Int. J. Mod. Phys. A 18:173 2003.
    [Google Scholar]
  96. 95. 
    Toll T, Ullrich T. Phys. Rev. C 87:024913 2013.
    [Google Scholar]
  97. 96. 
    Miettinen HI, Pumplin J. Phys. Rev. D 18:1696 1978.
    [Google Scholar]
  98. 97. 
    Frankfurt L, Strikman M, Weiss C. Annu. Rev. Nucl. Part. Sci. 55:403 2005.
    [Google Scholar]
  99. 98. 
    Cepila J, Contreras JG, Tapia Takaki JD. Phys. Lett. B 766:186 2017.
    [Google Scholar]
  100. 99. 
    Cepila J, Contreras JG, Krelina M. Phys. Rev. C 97:024901 2018.
    [Google Scholar]
  101. 100. 
    Agakishiev G et al.(STAR Collab.) Phys. Rev. C 85:014910 2012.
    [Google Scholar]
  102. 101. 
    Accardi A et al. Eur. Phys. J. A 52:268 2016.
    [Google Scholar]
  103. 102. 
    Lansberg JP, Massacrier L, Szymanowski L, Wagner J. Phys. Lett. B 793:33 2019.
    [Google Scholar]
  104. 103. 
    Schmidke B. Ultra-peripheral collisions at STAR Presented at the 2019 Meeting of the Division of Particles & Fields of the American Physical Society, Boston, MA, July 29–Aug. 2 2019.
    [Google Scholar]
  105. 104. 
    Pire B, Szymanowski L, Wagner J. Phys. Rev. D 79:014010 2009.
    [Google Scholar]
  106. 105. 
    Klein SR, Xie YP. Phys. Rev. C 100:024620 2019.
    [Google Scholar]
  107. 106. 
    Yang Q. Nucl. Phys. A 982:951 2019.
    [Google Scholar]
  108. 107. 
    Brambilla N et al. arXiv:1907.07583 [hep-ex] 2019.
  109. 108. 
    Lin QY, Liu X, Xu HS. Phys. Rev. D 89:034016 2014.
    [Google Scholar]
  110. 109. 
    Wang XY, Chen XR, Guskov A. Phys. Rev. D 92:094017 2015.
    [Google Scholar]
  111. 110. 
    Gonçalves VP, da Silva MLL. Phys. Rev. D 89:114005 2014.
    [Google Scholar]
  112. 111. 
    Gonçalves VP, Jaime MM. Phys. Lett. B 805:135447 2020.
    [Google Scholar]
  113. 112. 
    Ali A et al. Phys. Rev. Lett. 123:072001 2019.
    [Google Scholar]
  114. 113. 
    Adam J et al.(STAR Collab.) Phys. Rev. Lett. 123:132302 2019.
    [Google Scholar]
  115. 114. 
    Adam J et al.(ALICE Collab.) Phys. Rev. Lett. 116:222301 2016.
    [Google Scholar]
  116. 115. 
    Kłusek-Gawenda M, Szczurek A. Phys. Rev. C 93:044912 2016.
    [Google Scholar]
  117. 116. 
    Gay Ducati MB, Martins S. Phys. Rev. D 97:116013 2018.
    [Google Scholar]
  118. 117. 
    Hencken K, Trautmann D, Baur G. Z. Phys. C 68:473 1995.
    [Google Scholar]
  119. 118. 
    d'Enterria D, da Silveira GG. Phys. Rev. Lett. 111:080405 (2013). Erratum. Phys. Rev. Lett. 116:129901 2016.
    [Google Scholar]
  120. 119. 
    Brodsky SJ, Kinoshita T, Terazawa H. Phys. Rev. D 4:1532 1971.
    [Google Scholar]
  121. 120. 
    Budnev VM, Ginzburg IF, Meledin GV, Serbo VG. Phys. Rep. 15:181 1975.
    [Google Scholar]
  122. 121. 
    Baltz AJ, Gorbunov Y, Klein SR, Nystrand J. Phys. Rev. C 80:044902 2009.
    [Google Scholar]
  123. 122. 
    Baur G, Ferreira LG. Phys. Lett. B 254:30 1991.
    [Google Scholar]
  124. 123. 
    Afanasiev S et al.(PHENIX Collab.) Phys. Lett. B 679:321 2009.
    [Google Scholar]
  125. 124. 
    Abbas E et al.(ALICE Collab.) Eur. Phys. J. C 73:2617 2013.
    [Google Scholar]
  126. 125. 
    Adams J et al.(STAR Collab.) Phys. Rev. C 70:031902 2004.
    [Google Scholar]
  127. 126. 
    ATLAS Collab. Measurement of high-mass dimuon pairs from ultraperipheral lead-lead collisions at = 5.02 TeV with the ATLAS detector at the LHC ATLAS Note ATLAS-CONF-2016-025, CERN, Geneva 2016.
    [Google Scholar]
  128. 127. 
    Adam J et al. arXiv:1910.12400 [nucl-ex] 2019.
  129. 128. 
    Kłusek-Gawenda M, Szczurek A, Machado MVT, Serbo VG. Phys. Rev. C 83:024903 2011.
    [Google Scholar]
  130. 129. 
    Sengul M, Guclu MC, Mercan O, Karakus N. Eur. Phys. J. C 76:428 2016.
    [Google Scholar]
  131. 130. 
    Azevedo C, Gonçalves VP, Moreira BD. Eur. Phys. J. C 79:432 2019.
    [Google Scholar]
  132. 131. 
    Vysotsky MI, Zhemchugov E. Phys.-Uspekhi 62:910 2019.
    [Google Scholar]
  133. 132. 
    Zha W et al. Phys. Lett. B 781:182 2018.
    [Google Scholar]
  134. 133. 
    Li C, Zhou J, Zhou YJ. Phys. Lett. B 795:576 2019.
    [Google Scholar]
  135. 134. 
    ATLAS Collab. 2018 heavy ion collision event (365914, 562492194): back-to-back electron-muon pair in an ultra-peripheral collision recorded with the ATLAS detector during the 2018 Pb+Pb data-taking period Event Disp. ATLAS-EVENTDISPLAY-2018-009, CERN, Geneva. http://cds.cern.ch/record/2649465 2018.
    [Google Scholar]
  136. 135. 
    Silverman DJ, Shaw GL. Phys. Rev. D 27:1196 1983.
    [Google Scholar]
  137. 136. 
    Martin SP, Wells JD. Phys. Rev. D 64:035003 2001.
    [Google Scholar]
  138. 137. 
    Beresford L, Liu J. arXiv:1908.05180 [hep-ph] 2019.
  139. 138. 
    Dyndał M, Kłusek-Gawenda M, Schott M, Szczurek A. arXiv:2002.05503 [hep-ph] 2020.
  140. 139. 
    Klein S, Mueller AH, Xiao BW, Yuan F. Phys. Rev. Lett. 122:132301 2019.
    [Google Scholar]
  141. 140. 
    Klein S, Mueller A, Xiao BW, Yuan F. arXiv:2003.02947 [hep-ph] 2020.
  142. 141. 
    Sjöstrand T et al. Comput. Phys. Commun. 191:159 2015.
    [Google Scholar]
  143. 142. 
    Hencken K, Baur G, Trautmann D. Phys. Rev. C 69:054902 2004.
    [Google Scholar]
  144. 143. 
    Aste AW. EPL 81:61001 2008.
    [Google Scholar]
  145. 144. 
    Klein SR. Nucl. Instrum. Meth. A 459:51 2001.
    [Google Scholar]
  146. 145. 
    Bruce R, Bocian D, Gilardoni S, Jowett JM. Phys. Rev. ST Accel. Beams 12:071002 2009.
    [Google Scholar]
  147. 146. 
    Jowett J et al. Bound-free pair production in LHC Pb-Pb operation at 6.37 Z TeV per beam. Proceedings of the 7th International Particle Accelerator Conference (IPAC2016) KS Kim,, IS Ko,, KR Kim,, VRW Schaa1497–500 Geneva: JACoW. http://accelconf.web.cern.ch/ipac2016/papers/tupmw028.pdf 2016.
    [Google Scholar]
  148. 147. 
    Baur G et al. Phys. Lett. B 368:251 1996.
    [Google Scholar]
  149. 148. 
    Blanford G et al. Phys. Rev. Lett. 80:3037 1998.
    [Google Scholar]
  150. 149. 
    Wells JC, Oberacker VE, Strayer MR, Umar AS. Phys. Rev. A 53:1498 1996.
    [Google Scholar]
  151. 150. 
    Bertulani CA, Ellermann M. Phys. Rev. C 81:044910 2010.
    [Google Scholar]
  152. 151. 
    Azevedo C, Gonçalves VP, Moreira BD. Phys. Rev. C 101:024914 2020.
    [Google Scholar]
  153. 152. 
    Kłusek-Gawenda M, Lebiedowicz P, Szczurek A. Phys. Rev. C 93:044907 2016.
    [Google Scholar]
  154. 153. 
    Ginzburg IF, Schiller A. Phys. Rev. D 57:6599 1998.
    [Google Scholar]
  155. 154. 
    Fichet S et al. J. High Energy Phys. 1502:165 2015.
    [Google Scholar]
  156. 155. 
    Knapen S, Lin T, Lou HK, Melia T. Phys. Rev. Lett. 118:171801 2017.
    [Google Scholar]
  157. 156. 
    Bauer M, Neubert M, Thamm A. J. High Energy Phys. 1712:44 2017.
    [Google Scholar]
  158. 157. 
    Jarlskog G et al. Phys. Rev. D 8:3813 1973.
    [Google Scholar]
  159. 158. 
    Akhmadaliev SZ et al. Phys. Rev. Lett. 89:061802 2002.
    [Google Scholar]
  160. 159. 
    Aad G et al.(ATLAS Collab.) Phys. Rev. Lett. 123:052001 2019.
    [Google Scholar]
  161. 160. 
    Aaboud M et al.(ATLAS Collab.) Nat. Phys. 13:852 2017.
    [Google Scholar]
  162. 161. 
    Sirunyan AM et al. Phys. Lett. B 797:134826 2019.
    [Google Scholar]
  163. 162. 
    Aad G et al.(ATLAS Collab.) Eur. Phys. J. C 76:210 2016.
    [Google Scholar]
  164. 163. 
    Klein SR. Phys. Rev. D 98:118501 2018.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-030320-033923
Loading
/content/journals/10.1146/annurev-nucl-030320-033923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error