1932

Abstract

Vector boson scattering is a key production process to probe the electroweak symmetry breaking of the Standard Model and is one of the most important topics of the physics program for the HL-LHC since it involves both self-couplings of vector bosons and their coupling with the Higgs boson. If the Higgs mechanism is not the sole source of electroweak symmetry breaking, the scattering amplitude deviates from the Standard Model prediction at high scattering energy. Moreover, deviations may be detectable even if a New Physics scale is higher than the reach of direct searches. In this review, the most recent experimental measurements of the production cross sections of vector boson pairs in association with two jets in proton–proton collisions at TeV at the LHC are reported, using data sets recorded by the ATLAS and CMS detectors. Applications to searches for New Physics, as well as prospects for measuring the electroweak vector boson scattering processes with larger data samples, are also summarized.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101822-053323
2023-09-25
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-101822-053323.html?itemId=/content/journals/10.1146/annurev-nucl-101822-053323&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 716:1 2012.)
  2. 2.
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 716:30 2012.)
  3. 3.
    Chatrchyan S et al. (CMS Collab.) J. High Energy Phys. 1306:81 2013.)
  4. 4.
    Englert F, Brout R. Phys. Rev. Lett. 13:321 1964.)
  5. 5.
    Higgs PW. Phys. Lett. 12:132 1964.)
  6. 6.
    Higgs PW. Phys. Rev. Lett. 13:508 1964.)
  7. 7.
    Guralnik GS, Hagen CR, Kibble TWB. Phys. Rev. Lett. 13:585 1964.)
  8. 8.
    Higgs PW. Phys. Rev. 145:1156 1966.)
  9. 9.
    Kibble TWB. Phys. Rev. 155:1554 1967.)
  10. 10.
    Espriu D, Yencho B. Phys. Rev. D 87:5055017 2013.)
  11. 11.
    Chang J, Cheung K, Lu CT, Yuan TC. Phys. Rev. D 87:093005 2013.)
  12. 12.
    Pappadopulo D, Thamm A, Torre R, Wulzer A. J. High Energy Phys. 1409:60 2014.)
  13. 13.
    Georgi H, Machacek M. Nucl. Phys. B 262:463 1985.)
  14. 14.
    Englert C, Re E, Spannowsky M. Phys. Rev. D 88:035024 2013.)
  15. 15.
    Englert C, Re E, Spannowsky M. Phys. Rev. D 87:9095014 2013.)
  16. 16.
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 113:14141803 2014.)
  17. 17.
    Khachatryan V et al. (CMS Collab.) Phys. Rev. Lett. 114:5051801 2015.)
  18. 18.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 120:8081801 2018.)
  19. 19.
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. Lett. 123:16161801 2019.)
  20. 20.
    Frederix R, Frixione S J. High Energy Phys. 1212:61 2012.)
  21. 21.
    Alwall J et al. J. High Energy Phys. 1407:79 2014.)
  22. 22.
    Buarque Franzosi D, Mattelaer O, Ruiz R, Shil S J. High Energy Phys. 2004.82 2020.)
  23. 23.
    Bothmann E et al. SciPost Phys. 7:3034 2019.)
  24. 24.
    Albertsson K et al. EPJ Web Conf. 245:06019 2020.)
  25. 25.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 81:8723 2021.)
  26. 26.
    ATLAS Collab arXiv:2207.03925 [hep-ex] 2022.)
  27. 27.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 809:135710 2020.)
  28. 28.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 812:136018 2021.)
  29. 29.
    Doroba K et al. Phys. Rev. D 86:036011 2012.)
  30. 30.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 812:111111 2022.)
  31. 31.
    Aaboud M et al. (ATLAS Collab.) Phys. Lett. B 793:469 2019.)
  32. 32.
    Aad G et al. (ATLAS Collab.) Nat. Phys. 19:237 2023.)
  33. 33.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 812:135992 2021.)
  34. 34.
    Gao Y et al. Phys. Rev. D 81:075022 2010.)
  35. 35.
    Bolognesi S et al. Phys. Rev. D 86:095031 2012.)
  36. 36.
    Anderson I et al. Phys. Rev. D 89:3035007 2014.)
  37. 37.
    Campbell JM, Ellis RK. Nucl. Phys. B Proc. Suppl. 205–206:10 2010.)
  38. 38.
    Grazzini M, Kallweit S, Rathlev D. Phys. Lett. B 750:407 2015.)
  39. 39.
    Gieseke S, Kasprzik T, Kühn JH. Eur. Phys. J. C 74:82988 2014.)
  40. 40.
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 100:3032007 2019.)
  41. 41.
    Tumasyan A et al. (CMS Collab.) Phys. Lett. B 834:137438 2022.)
  42. 42.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 798:134985 2019.)
  43. 43.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 811:135988 2020.)
  44. 44.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1706:106 2017.)
  45. 45.
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 770:380 2017.)
  46. 46.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1707:107 2017.)
  47. 47.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2006:76 2020.)
  48. 48.
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 803:135341 2020.)
  49. 49.
    Tumasyan A et al. (CMS Collab.) Phys. Rev. D 104:072001 2021.)
  50. 50.
    ATLAS Collab Report ATLAS-CONF-2021-038 CERN Geneva: 2021.)
  51. 51.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 82:2105 2022.)
  52. 52.
    Aad G et al. (ATLAS Collab.) arXiv:2208.12741 [hep-ex] 2022.)
  53. 53.
    Éboli OJP, Gonzalez-Garcia MC. Phys. Rev. D 93:093013 2016.)
  54. 54.
    Aad G et al. (ATLAS Collab.) arXiv:2207.03925 [hep-ex] 2022.)
  55. 55.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 81:723 2021.)
  56. 56.
    ATLAS Collab Report ATL-PHYS-PUB-2022-018 CERN Geneva: 2022.)
  57. 57.
    CMS Collab Report CMS-PAS-FTR-21-001 CERN Geneva: 2021.)
  58. 58.
    CMS Collab Report CMS-PAS-FTR-18-014 CERN Geneva: 2018.)
  59. 59.
    Bossio Sola JD et al. (ATLAS Collab.) Report CERN-LHCC-2017-021/ATLAS-TDR-030 CERN Geneva: 2018.)
  60. 60.
    Abbaneo D et al. (ATLAS Collab.) Report CERN-LHCC-2017-009/CMS-TDR-014 CERN Geneva: 2017.)
  61. 61.
    Daneri MF et al. (ATLAS Collab.) Report LHCC-2020-007/ATLAS-TDR-031 CERN Geneva: 2020.)
  62. 62.
    Apresyan A et al. (CMS Collab.) Report CERN-LHCC-2019-003/CMS-TDR-020 CERN Geneva: 2019.)
  63. 63.
    Bossio Sola JD et al. (ATLAS Collab.) Report LHCC-2017-018/ATLAS-TDR-027 CERN Geneva: 2018.)
  64. 64.
    Azzi P et al. (CMS Collab.) Report CERN-LHCC-2017-023/CMS-TDR-019 CERN Geneva: 2018.)
/content/journals/10.1146/annurev-nucl-101822-053323
Loading
/content/journals/10.1146/annurev-nucl-101822-053323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error