1932

Abstract

Vector boson scattering is a key production process to probe the electroweak symmetry breaking of the Standard Model and is one of the most important topics of the physics program for the HL-LHC since it involves both self-couplings of vector bosons and their coupling with the Higgs boson. If the Higgs mechanism is not the sole source of electroweak symmetry breaking, the scattering amplitude deviates from the Standard Model prediction at high scattering energy. Moreover, deviations may be detectable even if a New Physics scale is higher than the reach of direct searches. In this review, the most recent experimental measurements of the production cross sections of vector boson pairs in association with two jets in proton–proton collisions at TeV at the LHC are reported, using data sets recorded by the ATLAS and CMS detectors. Applications to searches for New Physics, as well as prospects for measuring the electroweak vector boson scattering processes with larger data samples, are also summarized.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101822-053323
2023-09-25
2025-03-21
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-101822-053323.html?itemId=/content/journals/10.1146/annurev-nucl-101822-053323&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 716:1 2012.)
    [Google Scholar]
  2. 2.
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 716:30 2012.)
    [Google Scholar]
  3. 3.
    Chatrchyan S et al. (CMS Collab.) J. High Energy Phys. 1306:81 2013.)
    [Google Scholar]
  4. 4.
    Englert F, Brout R. Phys. Rev. Lett. 13:321 1964.)
    [Google Scholar]
  5. 5.
    Higgs PW. Phys. Lett. 12:132 1964.)
    [Google Scholar]
  6. 6.
    Higgs PW. Phys. Rev. Lett. 13:508 1964.)
    [Google Scholar]
  7. 7.
    Guralnik GS, Hagen CR, Kibble TWB. Phys. Rev. Lett. 13:585 1964.)
    [Google Scholar]
  8. 8.
    Higgs PW. Phys. Rev. 145:1156 1966.)
    [Google Scholar]
  9. 9.
    Kibble TWB. Phys. Rev. 155:1554 1967.)
    [Google Scholar]
  10. 10.
    Espriu D, Yencho B. Phys. Rev. D 87:5055017 2013.)
    [Google Scholar]
  11. 11.
    Chang J, Cheung K, Lu CT, Yuan TC. Phys. Rev. D 87:093005 2013.)
    [Google Scholar]
  12. 12.
    Pappadopulo D, Thamm A, Torre R, Wulzer A. J. High Energy Phys. 1409:60 2014.)
    [Google Scholar]
  13. 13.
    Georgi H, Machacek M. Nucl. Phys. B 262:463 1985.)
    [Google Scholar]
  14. 14.
    Englert C, Re E, Spannowsky M. Phys. Rev. D 88:035024 2013.)
    [Google Scholar]
  15. 15.
    Englert C, Re E, Spannowsky M. Phys. Rev. D 87:9095014 2013.)
    [Google Scholar]
  16. 16.
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 113:14141803 2014.)
    [Google Scholar]
  17. 17.
    Khachatryan V et al. (CMS Collab.) Phys. Rev. Lett. 114:5051801 2015.)
    [Google Scholar]
  18. 18.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 120:8081801 2018.)
    [Google Scholar]
  19. 19.
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. Lett. 123:16161801 2019.)
    [Google Scholar]
  20. 20.
    Frederix R, Frixione S J. High Energy Phys. 1212:61 2012.)
    [Google Scholar]
  21. 21.
    Alwall J et al. J. High Energy Phys. 1407:79 2014.)
    [Google Scholar]
  22. 22.
    Buarque Franzosi D, Mattelaer O, Ruiz R, Shil S J. High Energy Phys. 2004.82 2020.)
    [Google Scholar]
  23. 23.
    Bothmann E et al. SciPost Phys. 7:3034 2019.)
    [Google Scholar]
  24. 24.
    Albertsson K et al. EPJ Web Conf. 245:06019 2020.)
    [Google Scholar]
  25. 25.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 81:8723 2021.)
    [Google Scholar]
  26. 26.
    ATLAS Collab arXiv:2207.03925 [hep-ex] 2022.)
  27. 27.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 809:135710 2020.)
    [Google Scholar]
  28. 28.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 812:136018 2021.)
    [Google Scholar]
  29. 29.
    Doroba K et al. Phys. Rev. D 86:036011 2012.)
    [Google Scholar]
  30. 30.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 812:111111 2022.)
    [Google Scholar]
  31. 31.
    Aaboud M et al. (ATLAS Collab.) Phys. Lett. B 793:469 2019.)
    [Google Scholar]
  32. 32.
    Aad G et al. (ATLAS Collab.) Nat. Phys. 19:237 2023.)
    [Google Scholar]
  33. 33.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 812:135992 2021.)
    [Google Scholar]
  34. 34.
    Gao Y et al. Phys. Rev. D 81:075022 2010.)
    [Google Scholar]
  35. 35.
    Bolognesi S et al. Phys. Rev. D 86:095031 2012.)
    [Google Scholar]
  36. 36.
    Anderson I et al. Phys. Rev. D 89:3035007 2014.)
    [Google Scholar]
  37. 37.
    Campbell JM, Ellis RK. Nucl. Phys. B Proc. Suppl. 205–206:10 2010.)
    [Google Scholar]
  38. 38.
    Grazzini M, Kallweit S, Rathlev D. Phys. Lett. B 750:407 2015.)
    [Google Scholar]
  39. 39.
    Gieseke S, Kasprzik T, Kühn JH. Eur. Phys. J. C 74:82988 2014.)
    [Google Scholar]
  40. 40.
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 100:3032007 2019.)
    [Google Scholar]
  41. 41.
    Tumasyan A et al. (CMS Collab.) Phys. Lett. B 834:137438 2022.)
    [Google Scholar]
  42. 42.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 798:134985 2019.)
    [Google Scholar]
  43. 43.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 811:135988 2020.)
    [Google Scholar]
  44. 44.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1706:106 2017.)
    [Google Scholar]
  45. 45.
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 770:380 2017.)
    [Google Scholar]
  46. 46.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1707:107 2017.)
    [Google Scholar]
  47. 47.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2006:76 2020.)
    [Google Scholar]
  48. 48.
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 803:135341 2020.)
    [Google Scholar]
  49. 49.
    Tumasyan A et al. (CMS Collab.) Phys. Rev. D 104:072001 2021.)
    [Google Scholar]
  50. 50.
    ATLAS Collab Report ATLAS-CONF-2021-038 CERN Geneva: 2021.)
  51. 51.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 82:2105 2022.)
    [Google Scholar]
  52. 52.
    Aad G et al. (ATLAS Collab.) arXiv:2208.12741 [hep-ex] 2022.)
  53. 53.
    Éboli OJP, Gonzalez-Garcia MC. Phys. Rev. D 93:093013 2016.)
    [Google Scholar]
  54. 54.
    Aad G et al. (ATLAS Collab.) arXiv:2207.03925 [hep-ex] 2022.)
  55. 55.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 81:723 2021.)
    [Google Scholar]
  56. 56.
    ATLAS Collab Report ATL-PHYS-PUB-2022-018 CERN Geneva: 2022.)
  57. 57.
    CMS Collab Report CMS-PAS-FTR-21-001 CERN Geneva: 2021.)
  58. 58.
    CMS Collab Report CMS-PAS-FTR-18-014 CERN Geneva: 2018.)
  59. 59.
    Bossio Sola JD et al. (ATLAS Collab.) Report CERN-LHCC-2017-021/ATLAS-TDR-030 CERN Geneva: 2018.)
  60. 60.
    Abbaneo D et al. (ATLAS Collab.) Report CERN-LHCC-2017-009/CMS-TDR-014 CERN Geneva: 2017.)
  61. 61.
    Daneri MF et al. (ATLAS Collab.) Report LHCC-2020-007/ATLAS-TDR-031 CERN Geneva: 2020.)
  62. 62.
    Apresyan A et al. (CMS Collab.) Report CERN-LHCC-2019-003/CMS-TDR-020 CERN Geneva: 2019.)
  63. 63.
    Bossio Sola JD et al. (ATLAS Collab.) Report LHCC-2017-018/ATLAS-TDR-027 CERN Geneva: 2018.)
  64. 64.
    Azzi P et al. (CMS Collab.) Report CERN-LHCC-2017-023/CMS-TDR-019 CERN Geneva: 2018.)
/content/journals/10.1146/annurev-nucl-101822-053323
Loading
/content/journals/10.1146/annurev-nucl-101822-053323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error