1932

Abstract

In the last decade, cryogenic bolometers have provided increasingly improved resolution and sensitivity in particle and radiation detectors. Thermal particle detectors have proven their outstanding capabilities in different fields of fundamental physics, especially in rare event detection. Cryogenic incoherent detector arrays designed to detect millimeter-wave photons have helped enable precision measurements of anisotropies in the cosmic microwave background (CMB), providing a unique probe of early universe physics and helping to constrain parameters of particle physics such as the sum of the neutrino masses. We review the latest achievements of cryogenic particle detectors for direct detection searches for dark matter and double- decay, as well as for CMB measurements, and we discuss expected improvements aiming to increase the sensitivities of these experiments. An important challenge is the large-scale implementation of arrays of detectors such as transition edge sensors, especially in CMB polarization experiments. We describe the challenges of scaling up to these larger arrays, including fabrication throughput and development of new multiplexing electronics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101916-123130
2017-10-12
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/nucl/67/1/annurev-nucl-101916-123130.html?itemId=/content/journals/10.1146/annurev-nucl-101916-123130&mimeType=html&fmt=ahah

Literature Cited

  1. Langley SP.1.  Proc. Am. Acad. Arts Sci. 16:342–58 1881. [Google Scholar]
  2. White AD, Chanute O, Pickering EC. 2.  Smithson. Misc. Coll. 49:IV 1907. [Google Scholar]
  3. Andrews DH, Fowler RD, Williams MC. 3.  Phys. Rev. 76154 1949. [Google Scholar]
  4. Estermann I, Foner A. 4.  Phys. Rev. 79:365 1950. [Google Scholar]
  5. Low FJ.5.  J. Opt. Soc. Am. 51:1300 1961. [Google Scholar]
  6. Klypin AA, Sazhin MV, Strukov IA, Skulachev DP. 6.  Sov. Astron. Lett. 13104 1987. [Google Scholar]
  7. Schuster J. 7.  et al. Astrophys. J. Lett. 412:L47 1993. [Google Scholar]
  8. Hancock S. 8.  et al. Nature 367:333 1994. [Google Scholar]
  9. Smoot G. 9.  et al. Astrophys. J. 360:685 1990. [Google Scholar]
  10. Devlin MJ. 10.  et al. Astrophys. J. 509:L69 1998. [Google Scholar]
  11. Wollack EJ. 11.  et al. Astrophys. J. 476:440 1997. [Google Scholar]
  12. Scott PF. 12.  et al. Astrophys. J. 461:L1 1996. [Google Scholar]
  13. Miller A. 13.  et al. Astrophys. J. Suppl. 140:115 2002. [Google Scholar]
  14. Halverson N. 14.  et al. Proc. SPIE 3357:416 1998. [Google Scholar]
  15. Page LA, Cheng ES, Meyer SS. 15.  Astrophys. J. 355:L1 1990. [Google Scholar]
  16. Mather JC, Fixsen DJ, Shafer RA. 16.  Proc. SPIE2019168 1993. [Google Scholar]
  17. Fixsen DJ. 17.  et al. Astrophys. J. 470:63 1996. [Google Scholar]
  18. Devlin MJ. 18.  et al. Astrophys. J. Lett. 430:L1 1994. [Google Scholar]
  19. Crill BP. 19.  et al. Astrophys. J. Suppl. 148:527 2003. [Google Scholar]
  20. Rabii B. 20.  et al. Rev. Sci. Instrum. 77:071101 2006. [Google Scholar]
  21. Benoit A. 21.  et al. Adv. Space Res. 33: 1790. 2004. [Google Scholar]
  22. Mather JC. 22.  et al. Astrophys. J. 420:439 1994. [Google Scholar]
  23. Debernardis P. 23.  et al. Nature 404:955 2000. [Google Scholar]
  24. Hanany S. 24.  et al. Astrophys. J. Lett. 545:L5 2000. [Google Scholar]
  25. Ade PAR. 25.  et al. Planck Collab. Astron Astrophys 571:16 2014. [Google Scholar]
  26. Crites A. 26.  et al. Astrophys. J. 805:36 2015. [Google Scholar]
  27. Naess S. 27.  et al. J. Cosmol. Astropart. Phys. 10:007 2014. [Google Scholar]
  28. Ade PAR. 28.  et al. (BICEP2 Collab. Phys. Rev. Lett 112:241101 2014. [Google Scholar]
  29. Ade PAR. 29.  et al. POLARBEAR Collab. Astrophys. J. 794:171 2014. [Google Scholar]
  30. Fiorini E, Niinikoski TO. 30.  Nucl. Instrum. Methods A 224:83 1984. [Google Scholar]
  31. Fukuda Y. 31.  et al. Phys. Rev. Lett. 81:1562 1998. [Google Scholar]
  32. Bernabei R. 32.  et al. Phys. Lett. B 424:195 1998. [Google Scholar]
  33. Klapdor-Kleingrothaus HV. 33.  et al. Mod. Phys. Lett. A 16:2409 2001. [Google Scholar]
  34. Agostini M. 34.  et al. Phys. Rev. Lett. 111:122503 2013. [Google Scholar]
  35. Twerenbold D.35.  Rep. Prog. Phys. 59:349 1996. [Google Scholar]
  36. Booth NE, Cabrera B, Fiorini E. 36.  Annu. Rev. Nucl. Part. Sci. 46:471 1996. [Google Scholar]
  37. Quaglia R. 37.  et al. IEEE Trans. Nucl. Sci. 62:221 2015. [Google Scholar]
  38. Cardani L. 38.  et al. J. Instrum. 7:P01020 2012. [Google Scholar]
  39. Enns C. 39.  Cryogenic Particle Detection. Berlin: Springer 2005. [Google Scholar]
  40. Ullom JN, Bennet DA. 40.  Supercond. Sci. Technol. 28:084003 2015. [Google Scholar]
  41. de Marcillac P. 41.  et al. Nature 422:876 2003. [Google Scholar]
  42. Beeman JW. 42.  et al. Phys. Rev. Lett. 108:062501 2012. [Google Scholar]
  43. Casali N. 43.  et al. J. Phys. G 41:075101 2014. [Google Scholar]
  44. Raccanelli A. 44.  et al. Cryogenics 41:763 2001. [Google Scholar]
  45. Gorla P, Bucci C, Pirro S. 45.  Nucl. Instrum. Methods A 520:641 2004. [Google Scholar]
  46. Pirro S. 46.  et al. Nucl. Instrum. Methods A 444:331 2000. [Google Scholar]
  47. Mykkanen E. 47.  et al. Rev. Sci. Instrum. 87:105111 2016. [Google Scholar]
  48. Kalra R. 48.  et al. Rev. Sci. Instrum. 87:073905 2016. [Google Scholar]
  49. Wiener N.49.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications Cambridge, MA: MIT Press 1964. [Google Scholar]
  50. Gatti E, Manfredi PF. 50.  Riv. Nuovo Cim. 9:1 1986. [Google Scholar]
  51. Di Domizio S, Orio F, Vignati M. 51.  J. Instrum. 6:P02007 2011. [Google Scholar]
  52. Hehn L. 52.  et al. Eur. Phys. J. C 76:548 2016. [Google Scholar]
  53. Agnese R. 53.  et al. Phys. Rev. Lett. 16:071301 2016. [Google Scholar]
  54. Angloher G. 54.  Eur. Phys. J. C 74:3184 2014. [Google Scholar]
  55. Caparelli S. 55.  et al. Rev. Sci. Instrum. 77:095102 2006. [Google Scholar]
  56. Riabzev SV. 56.  et al. Cryogenics 49:1 2009. [Google Scholar]
  57. Wang C, Hartnett JG. 57.  Cryogenics 50:336 2010. [Google Scholar]
  58. Pirro S.58.  Nucl. Instrum. Methods A 559:672 2006. [Google Scholar]
  59. Schäffner K. 59.  et al. Astropart. Phys. 69:30 2015. [Google Scholar]
  60. Ligi C. 60.  et al. J. Low Temp. Phys. 184:590 2016. [Google Scholar]
  61. Alduino C. 61.  J. Instrum. 11:P07009 2016. [Google Scholar]
  62. Barabash SA. 62.  et al. Eur. Phys. J. C 76:487 2016. [Google Scholar]
  63. Adam R. 63.  et al. (Planck Collab.) Astron. Astrophys. 594:A1 2016. [Google Scholar]
  64. Goodman MW, Witten E. 64.  Phys. Rev. D 31:3059 1985. [Google Scholar]
  65. Klasen M, Pohl M, Sigl G. 65.  Prog. Part. Nucl. Phys. 85:1 2015. [Google Scholar]
  66. Andi T. 66.  et al. (Panda-X Collab.) Phys. Rev. Lett. 117:121303 2016. [Google Scholar]
  67. Akerib DS. 67.  et al. (Lux Collab.) Phys. Rev. Lett. 118:021303 2017. [Google Scholar]
  68. Aprile E. 68.  et al. (Xenon Collab.) Phys. Rev. D 94:122001 2016. [Google Scholar]
  69. Agnes P. 69.  et al. Dark-Side Collab.) Phys. Lett. B 743:456 2015. [Google Scholar]
  70. Aström J. 70.  et al. Phys. Lett. A 356:262 2006. [Google Scholar]
  71. Tantot A. 71.  et al. Phys. Rev. Lett. 111:154301 2013. [Google Scholar]
  72. Agostini M. 72.  et al. (GERDA Collab.) Astropart. Phys. 91:15 2016. [Google Scholar]
  73. Neganov BS, Trofimov NV. 73.  Otkryt. Izobr. 146:215 1985. [Google Scholar]
  74. Luke PN.74.  J. Appl. Phys. 64:6858 1988. [Google Scholar]
  75. Armengaud E. 75.  et al. (Edelweiss Collab.) J. Cosmol. Astropart. Phys. 05:019 2016. [Google Scholar]
  76. Agnese R. 76.  et al. (SuperCDMS Collab.) Phys. Rev. Lett. 112:241302 2014. [Google Scholar]
  77. Haller EE, Palaio NP, Hansen WL, Kreysa E. 77.  Neutron Transmutation Doping of Semiconductor Materials RD Larabee 21 Boston: Springer 1984. [Google Scholar]
  78. Agnese R. 78.  et al. (SuperCDMS Collab.) Appl. Phys. Lett. 103:164105 2013. [Google Scholar]
  79. de la Broïse, Bounab A. 79.  Nucl. Instrum. Methods A 787:51 2015. [Google Scholar]
  80. Agnese R. 80.  et al. (SuperCDMS Collab.) Phys. Rev. D 95:082002 2017. [Google Scholar]
  81. Phipps A. 81.  et al. arXiv1611.09712 [physics.ins-det] 2016.
  82. Strauss R. 82.  et al. Eur. Phys. J. C 74:2957 2014. [Google Scholar]
  83. Angloher. 83.  et al. Eur. Phys. J. C 76:25 2016. [Google Scholar]
  84. Petricca F.83.  Direct dark matter search with the CRESST-III experiment Presented at Top. Astropart. Undergr. Phys. (TAUP), Sudbury, Can., July 24–28 2017. [Google Scholar]
  85. Strauss R. 84.  et al. Nucl. Instrum. Methods A 845:414 2017. [Google Scholar]
  86. Angloher G. 85.  et al. Eur. Phys. J. C 76:441 2016. [Google Scholar]
  87. Bernabei R. 86.  et al. Eur. Phys. J. C 73:2648 2013. [Google Scholar]
  88. Schäffner K. 87.  et al. Astropart. Phys. 84:70 2016. [Google Scholar]
  89. Avignone FT, Elliott SR, Engel J. 88.  Rev. Mod. Phys. 80:481 2008. [Google Scholar]
  90. Cremonesi O, Pavan M. 89.  Adv. High Energy Phys. 2014:951432 2014. [Google Scholar]
  91. Andreotti E. 90.  et al. Astropart. Phys. 34:822 2011. [Google Scholar]
  92. Alfonso K. 91.  et al. Phys. Rev. Lett. 115:102502 2015. [Google Scholar]
  93. Cremonisi O.92.  First CUORE results. Presented at Top. Astropart. Undergr. Phys. (TAUP), Sudbury, Can., July 24–28 2017. [Google Scholar]
  94. Bucci C. 92.  et al. Eur. Phys. J. A 41:155 2009. [Google Scholar]
  95. Pirro S. 93.  et al. Phys. At. Nucl. 69:2109 2006. [Google Scholar]
  96. Arnaboldi C. 94.  et al. Astropart. Phys. 34:143 2010. [Google Scholar]
  97. Gironi L. 95.  et al. J. Instrum. 5:P11007 2010. [Google Scholar]
  98. Arnaboldi C. 96.  et al. Astropart. Phys. 34:334 2011. [Google Scholar]
  99. Gironi L.97.  J. Low Temp. Phys. 167:504 2012. [Google Scholar]
  100. Mikhailik VB, Kraus H. 98.  Phys. Status Solidi B 247:1583 2010. [Google Scholar]
  101. Arnaboldi C. 99.  et al. Astropart. Phys. 34:797 2011. [Google Scholar]
  102. Artusa DR. 100.  et al. Eur. Phys. J. C 76:364 2016. [Google Scholar]
  103. Beeman JW. 101.  et al. Adv. High Energy Phys. 2013:237973 2013. [Google Scholar]
  104. Kim GB. 102.  et al. Adv. High Energy Phys. 2015:817530 2015. [Google Scholar]
  105. Armengaud E. 103.  et al. J. Phys. Conf. Ser. 718:062008 2016. [Google Scholar]
  106. Broniatowski A. 104.  et al. J. Low Temp. Phys. 184:330 2016. [Google Scholar]
  107. Stark M. 105.  et al. Nucl. Instrum. Methods A 545:738 2005. [Google Scholar]
  108. Isaila C. 106.  et al. Phys. Lett. B 716:160 2012. [Google Scholar]
  109. Tabarelli de Fatis T. 107.  Eur. Phys. J. C 65:359 2010. [Google Scholar]
  110. Beeman JW. 108.  et al. Astropart. Phys. 35:558 2012. [Google Scholar]
  111. Willers M. 109.  et al. J. Instrum. 10:P03003 2015. [Google Scholar]
  112. Pattavina L. 110.  et al. J. Low Temp. Phys. 184:286 2016. [Google Scholar]
  113. Gironi L. 111.  et al. Phys. Rev. C 94:054608 2016. [Google Scholar]
  114. Artusa DR. 112.  et al. Eur. Phys. J. C 74:3096 2014. [Google Scholar]
  115. Artusa DR. 113.  et al. Phys. Lett. B 767:321 2017. [Google Scholar]
  116. Nucciotti A.114.  Adv. High Energy Phys. 2016:9153024 2016. [Google Scholar]
  117. Drexlin G. 115.  et al. Adv. High Energy Phys. 2013:293986 2013. [Google Scholar]
  118. Alpert B. 116.  et al. Eur. Phys. J. C 75:112 2015. [Google Scholar]
  119. Giachero A. 117.  et al. J. Instrum. 12:C02046 2017. [Google Scholar]
  120. Hassel C. 118.  et al. J. Low Temp. Phys. 184:910 2016. [Google Scholar]
  121. Kempf S. 119.  et al. AIP Adv. 7:015007 2017. [Google Scholar]
  122. Ade PAR. 120.  et al. (Planck Collab.) Astron. Astrophys. 594:A13 2016. [Google Scholar]
  123. Ade PAR. 121.  et al. Astrophys. J. 806:206 2015. [Google Scholar]
  124. Austermann J. 122.  et al. Proc. SPIE 8452:84521E 2012. [Google Scholar]
  125. Inoue Y. 123.  et al. Proc. SPIE 9914:99141I 2016. [Google Scholar]
  126. Essinger-Heileman T. 124.  et al. Proc. SPIE 9153:91531I 2014. [Google Scholar]
  127. Runyan MC. 125.  et al. Proc. SPIE 7741:77411O 2010. [Google Scholar]
  128. Reichborn-Kjennerud B. 126.  et al. Proc. SPIE 7741:77411C ( 2010. [Google Scholar]
  129. Lazear J. 127.  et al. Proc. SPIE 9153:91531L 2014. [Google Scholar]
  130. Niemack MC. 128.  et al. Proc. SPIE 7741:77411S 2010. [Google Scholar]
  131. Thornton RJ. 129.  et al. Astrophys. J. Suppl. 227:21T 2016. [Google Scholar]
  132. Appel JW. 130.  et al. Proc. SPIE 9153:91531J 2014. [Google Scholar]
  133. Swetz DS. 131.  et al. Astrophys. J. Suppl. 194:41 2011. [Google Scholar]
  134. Ade PAR. 132.  et al. (BICEP2 Collab.) Astrophys. J. 792:62 2014. [Google Scholar]
  135. Grace E. 133.  et al. Proc. SPIE 9153:915310 2014. [Google Scholar]
  136. Kermish ZD. 134.  et al. Proc. SPIE 8452:84521C 2012. [Google Scholar]
  137. Shirokoff E. 135.  et al. IEEE Trans. Appl. Supercond. 19:517 2009. [Google Scholar]
  138. George EM. 136.  et al. Proc. SPIE 8452:84521F 2012. [Google Scholar]
  139. Datta R. 137.  et al. J. Low Temp. Phys. 176:670 2014. [Google Scholar]
  140. Niemack M. 138.  et al. J. Low Temp. Phys. 184:746 2016. [Google Scholar]
  141. Monfardini A. 139.  et al. Astron. Astrophys. 521:A29 2010. [Google Scholar]
  142. Golwala S. 140.  et al. Proc. SPIE 8452:845205 2012. [Google Scholar]
  143. Swenson LJ. 141.  et al. Proc. SPIE 8452:84520P 2012. [Google Scholar]
  144. Galitzky N. 142.  et al. J. Astron. Instrum. 3:1440001 2014. [Google Scholar]
  145. Barlis A, Aguirre J, Stevenson T. 143.  Proc. SPIE 9914:99142F ( 2016. [Google Scholar]
  146. Flanigan D. 144.  et al. Appl. Phys. Lett. 108:083504 2016. [Google Scholar]
  147. Hubmayr J. 145.  et al. Appl. Phys. Lett. 106:073505 2015. [Google Scholar]
  148. de Korte PAJ. 146.  et al. Rev. Sci. Instrum. 74:3807 2003. [Google Scholar]
  149. Irwin KD. 147.  et al. AIP Conf. Proc. 605:301 2002. [Google Scholar]
  150. Dobbs MA. 148.  et al. Rev. Sci. Instrum. 83:073113 2012. [Google Scholar]
  151. Bender AN. 149.  et al. Proc. SPIE 9914:9914D1 2016. [Google Scholar]
  152. Rotermund K. 150.  et al. J. Low Temp. Phys. 184:486 2016. [Google Scholar]
  153. Henderson S. 151.  et al. Proc. SPIE 9914:9914G1 2016. [Google Scholar]
  154. Hijmering R. 152.  et al. Proc. SPIE 9914:99141C 2016. [Google Scholar]
  155. Deleted in proof
  156. Irwin KD, Lehnert KW. 154.  Appl. Phys. Lett. 85:2107 2004. [Google Scholar]
  157. Abazajian KN. 155.  et al. arXiv1610.02743v1 [astro-ph] 2016.
/content/journals/10.1146/annurev-nucl-101916-123130
Loading
/content/journals/10.1146/annurev-nucl-101916-123130
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error