
Full text loading...
At modern laser facilities, energy densities ranging from 1 Mbar to many hundreds of gigabars can regularly be achieved. These high-energy states of matter last for mere moments, measured in nanoseconds to tens of picoseconds, but during those times numerous high-precision instruments can be employed, revealing remarkable compressed matter physics, radiation–hydrodynamics physics, laser–matter interaction physics, and nuclear physics processes. We review the current progress of high-energy-density physics at the National Ignition Facility and describe the underlying physical principles.
Article metrics loading...
Full text loading...
Literature Cited
Data & Media loading...