1932

Abstract

Heavy ion collisions quickly form a droplet of quark–gluon plasma (QGP) with a remarkably small viscosity. We give an accessible introduction to how to study this smallest and hottest droplet of liquid made on Earth and why it is so interesting. The physics of heavy ion collisions ranges from highly energetic quarks and gluons described by perturbative QCD to a bath of strongly interacting gluons at lower energy scales. These gluons quickly thermalize and form QGP, while the energetic partons traverse this plasma and end in a shower of particles called jets. Analyzing the final particles in various ways allows us to study the properties of QGP and the complex dynamics of multiscale processes in QCD that govern its formation and evolution, providing what is perhaps the simplest form of complex quantum matter that we know of. Much remains to be understood, and throughout the review big open questions are encountered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101917-020852
2018-10-19
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/nucl/68/1/annurev-nucl-101917-020852.html?itemId=/content/journals/10.1146/annurev-nucl-101917-020852&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Yagi K, Hatsuda T, Miake Y Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 23:1 2005.
    [Google Scholar]
  2. 2.  Florkowski W Phenomenology of Ultra-Relativistic Heavy-Ion Collisions Singapore: World Sci 2010.
    [Google Scholar]
  3. 3.  Wang XN Quark–Gluon Plasma 5 Singapore: World Sci 2016.
    [Google Scholar]
  4. 4.  Toia A J. Phys. G 38:124007 2011.
    [Google Scholar]
  5. 5.  Heinz U, Snellings R Annu. Rev. Nucl. Part. Sci. 63:123 2013.
    [Google Scholar]
  6. 6.  Romatschke P, Romatschke U arXiv:1712.05815 [nucl-th] 2017.
  7. 7.  van der Schee W PhD thesis Utrecht Univ. Utrecht, Neth: 2014.
  8. 8.  Lee YJ, Yoon AS, Busza W MIT heavy ion event display: Pb+Pb 2.76 TeV Video MIT Cambridge, MA: http://web.mit.edu/mithig/movies/LHCanmation.mov 2018.
    [Google Scholar]
  9. 9.  Busza W, Ledoux R Annu. Rev. Nucl. Part. Sci. 38:119 1988.
    [Google Scholar]
  10. 10.  Busza W, Goldhaber AS Phys. Lett. B 139:235 1984.
    [Google Scholar]
  11. 11.  Kharzeev DE, Liao J, Voloshin SA, Wang G Prog. Part. Nucl. Phys. 88:1 2016.
    [Google Scholar]
  12. 12.  Baltz AJ et al. Phys. Rep. 458:1 2008.
    [Google Scholar]
  13. 13.  Heisenberg W Nature 164:65 1949.
    [Google Scholar]
  14. 14.  Hamilton J, Heitler W, Peng HW Phys. Rev. 64:78 1943.
    [Google Scholar]
  15. 15.  Fermi E Prog. Theor. Phys. 5:570 1950.
    [Google Scholar]
  16. 16.  Landau L Izv. Akad. Nauk Ser. Fiz. 17:51 1953.
    [Google Scholar]
  17. 17.  Feynman RP Phys. Rev. Lett. 23:1415 1969.
    [Google Scholar]
  18. 18.  Borsanyi S et al. Phys. Lett. B 730:99 2014.
    [Google Scholar]
  19. 19.  Bazavov A et al. (HotQCD Collab.) Phys. Rev. D 90:094503 2014.
    [Google Scholar]
  20. 20.  Casalderrey-Solana J et al. arXiv:1101.0618 [hep-th] 2014.
  21. 21.  Paquet JF et al. Phys. Rev. C 93:044906 2016.
    [Google Scholar]
  22. 22. Nucl. Sci. Advis. Comm. The 2015 long-range plan for nuclear science Report US Dep. Energy/Natl. Sci. Found. Washington, DC: https://science.energy.gov/∼/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf 2015.
    [Google Scholar]
  23. 23.  Collins JC, Perry MJ Phys. Rev. Lett. 34:1353 1975.
    [Google Scholar]
  24. 24.  Linde AD Rep. Prog. Phys. 42:389 1979.
    [Google Scholar]
  25. 25.  Witten E Phys. Rev. D 30:272 1984.
    [Google Scholar]
  26. 26.  Applegate JH, Hogan CJ Phys. Rev. D 31:3037 1985.
    [Google Scholar]
  27. 27.  Karsch F Nucl. Phys. A 698:199 2002.
    [Google Scholar]
  28. 28.  Aoki Y et al. Nature 443:675 2006.
    [Google Scholar]
  29. 29.  Thomas D et al. Astrophys. J. 430:291 1994.
    [Google Scholar]
  30. 30.  Policastro G, Son D, Starinets A Phys. Rev. Lett. 87:081601 2001.
    [Google Scholar]
  31. 31.  Hubeny VE, Minwalla S, Rangamani M arXiv:1107.5780 [hep-th] 2011.
  32. 32.  Lin HW, Meyer HB Lattice QCD for Nuclear Physics Berlin: Springer 2015.
    [Google Scholar]
  33. 33.  Borsanyi S et al. J. High Energy Phys. 07:056 2012.
    [Google Scholar]
  34. 34.  Meyer HB Eur. Phys. J. A 47:86 2011.
    [Google Scholar]
  35. 35.  van der Schee W Phys. Rev. D 87:061901 2013.
    [Google Scholar]
  36. 36.  Chesler PM Phys. Rev. Lett. 115:241602 2015.
    [Google Scholar]
  37. 37.  Chesler PM J. High Energy Phys. 03:146 2016.
    [Google Scholar]
  38. 38.  Nagle JL, Zajc WA Annu. Rev. Nucl. Part. Sci. 68211 2018.
    [Google Scholar]
  39. 39.  Aduszkiewicz A et al. (NA61/SHINE Collab.) Eur. Phys. J. C 77:671 2017.
    [Google Scholar]
  40. 40.  Luo X Nucl. Phys. A 956:75 2016.
    [Google Scholar]
  41. 41.  Heuser JM (CBM Collab.) Eur. Phys. J. Web Conf. 13:03001 2011.
    [Google Scholar]
  42. 42.  Toneev V Proc. Sci. CPOD07:057 2007.
    [Google Scholar]
  43. 43.  Stephanov MA Prog. Theor. Phys. Suppl. 153:139 2004.
    [Google Scholar]
  44. 44.  Rajagopal K, Wilczek F At the Frontier of Particle Physics: Handbook of QCD M Shifman, B Ioffe 32061 Singapore: World Sci 2000.
    [Google Scholar]
  45. 45.  de Forcrand P Proc. Sci. LAT2009:010 2009.
    [Google Scholar]
  46. 46.  Stephanov MA Phys. Rev. Lett. 102:032301 2009.
    [Google Scholar]
  47. 47.  Athanasiou C, Rajagopal K, Stephanov M Phys. Rev. D 82:074008 2010.
    [Google Scholar]
  48. 48.  Luo X (STAR Collab.) Proc. Sci. CPOD2014:019 2015.
    [Google Scholar]
  49. 49.  Alford MG, Schmitt A, Rajagopal K, Schafer T Rev. Mod. Phys. 80:1455 2008.
    [Google Scholar]
  50. 50.  Abbott B et al. (Virgo Collab., LIGO Collab.) Phys. Rev. Lett. 119:161101 2017.
    [Google Scholar]
  51. 51.  Eskola KJ, Paakkinen P, Paukkunen H, Salgado CA Eur. Phys. J. C 77:163 2017.
    [Google Scholar]
  52. 52.  Patrignani C et al. (Part. Data Group) Chin. Phys. C 40:100001 2016.
    [Google Scholar]
  53. 53.  Alver B, Baker M, Loizides C, Steinberg P arXiv:0805.4411 [nucl-ex] 2008.
  54. 54.  Alver B et al. (PHOBOS Collab.) Phys. Rev. C 83:024913 2011.
    [Google Scholar]
  55. 55.  Adam J et al. (ALICE Collab.) Phys. Lett. B 772:567 2017.
    [Google Scholar]
  56. 56.  Busza W Acta Phys. Polon. B 8:333 1977.
    [Google Scholar]
  57. 57.  Miller ML, Reygers K, Sanders SJ, Steinberg P Annu. Rev. Nucl. Part. Sci. 57:205 2007.
    [Google Scholar]
  58. 58.  Arsene I et al. (BRAHMS Collab.) Nucl. Phys. A 757:1 2005.
    [Google Scholar]
  59. 59.  Back B et al. (PHOBOS Collab.) Nucl. Phys. A 757:28 2005.
    [Google Scholar]
  60. 60.  Adams J et al. (STAR Collab.) Nucl. Phys. A 757:102 2005.
    [Google Scholar]
  61. 61.  Adcox K et al. (PHENIX Collab.) Nucl. Phys. A 757:184 2005.
    [Google Scholar]
  62. 62.  Armesto N, Scomparin E Eur. Phys. J. Plus 131:52 2016.
    [Google Scholar]
  63. 63.  Foka P, Janik MA Rev. Phys. 1:154 2016.
    [Google Scholar]
  64. 64.  Foka P, Janik MA Rev. Phys. 1:172 2016.
    [Google Scholar]
  65. 65.  Azaiez F et al. NuPECC long range plan 2017: perspectives in nuclear physics Report NuPECC/Eur. Sci. Found. Strasbourg, Fr: http://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf 2017.
    [Google Scholar]
  66. 66.  Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 110:022301 2013.
    [Google Scholar]
  67. 67.  Chatrchyan S et al. (CMS Collab.) J. High Energy Phys 03:022 2015.
    [Google Scholar]
  68. 68.  Aad G et al. (ATLAS Collab.) Phys. Rev. C 93:034914 2016.
    [Google Scholar]
  69. 69.  Connors M, Nattrass C, Reed R, Salur S arXiv:1705.01974 [nucl-ex] 2017.
  70. 70.  Collab CMS arXiv:1803.00042 [nucl-ex] 2018.
  71. 71.  Khachatryan V et al. (CMS Collab.) J. High Energy Phys 01:006 2016.
    [Google Scholar]
  72. 72.  Brenner AE et al. Phys. Rev. D 26:1497 1982.
    [Google Scholar]
  73. 73.  Barton DS et al. Phys. Rev. D 27:2580 1983.
    [Google Scholar]
  74. 74.  Arsene IC et al. (BRAHMS Collab.) Phys. Lett. B 677:267 2009.
    [Google Scholar]
  75. 96.  Adamczyk L et al. (STAR Collab.) Phys. Rev. C 96:044904 2017.
    [Google Scholar]
  76. 76.  Elias JE et al. (E178 Collab.) Phys. Rev. D 22:13 1980.
    [Google Scholar]
  77. 77.  Back B et al. (PHOBOS Collab.) Phys. Rev. C 74:021902 2006.
    [Google Scholar]
  78. 78.  Müller B, Rajagopal K Eur. Phys. J. C 43:15 2005.
    [Google Scholar]
  79. 79.  Abbas E et al. (ALICE Collab.) Phys. Lett. B 726:610 2013.
    [Google Scholar]
  80. 80.  Back B et al. (PHOBOS Collab.) Phys. Rev. Lett. 91:052303 2003.
    [Google Scholar]
  81. 81.  Aamodt K et al. (ALICE Collab.) Phys. Rev. Lett. 105:252301 2010.
    [Google Scholar]
  82. 82.  Aad G et al. (ATLAS Collab.) Phys. Lett. B 710:363 2012.
    [Google Scholar]
  83. 83.  Adam J et al. (ALICE Collab.) Phys. Rev. Lett. 116:222302 2016.
    [Google Scholar]
  84. 84.  Busza W Nucl. Phys. A 854:57 2011.
    [Google Scholar]
  85. 85.  Gelis F, Stasto AM, Venugopalan R Eur. Phys. J. C 48:489 2006.
    [Google Scholar]
  86. 86.  Chatrchyan S et al. (CMS Collab.) Phys. Rev. C 84:024906 2011.
    [Google Scholar]
  87. 87.  Chatrchyan S et al. (CMS Collab.) Eur. Phys. J. C 72:2012 2012.
    [Google Scholar]
  88. 88.  Aamodt K et al. (ALICE Collab.) Phys. Lett. B 708:249 2012.
    [Google Scholar]
  89. 89.  Li W Nucl. Phys. A 967:59 2017.
    [Google Scholar]
  90. 90.  Braun-Munzinger P, Koch V, Schäfer T, Stachel J Phys. Rep. 621:76 2016.
    [Google Scholar]
  91. 91.  Mehtar-Tani Y, Milhano JG, Tywoniuk K Int. J. Mod. Phys. A 28:1340013 2013.
    [Google Scholar]
  92. 92.  Qin GY, Wang XN Int. J. Mod. Phys. E 24:1530014 2015.
    [Google Scholar]
  93. 93.  Koch P, Müller B, Rafelski J Int. J. Mod. Phys. A 32:1730024 2017.
    [Google Scholar]
  94. 94.  Becattini F et al. Phys. Rev. Lett. 111:082302 2013.
    [Google Scholar]
  95. 95.  Andronic A, Braun-Munzinger P, Redlich K, Stachel J arXiv:1710.09425 [nucl-th] 2017.
  96. 75.  Abelev B et al. (ALICE Collab.) Phys. Rev. C 88:044910 2013.
    [Google Scholar]
  97. 97.  Back B et al. (PHOBOS Collab.) Phys. Rev. C 70:051901 2004.
    [Google Scholar]
  98. 98.  Rajagopal K arXiv:hep-ph/9504310 [hep-ph] 1995.
  99. 99.  Sirunyan AM et al. (CMS Collab.) arXiv:1706.05984 [hep-ex] 2017.
  100. 100.  Zhang BW, Ko CM, Liu W Phys. Rev. C 77:024901 2008.
    [Google Scholar]
  101. 101.  Khachatryan V et al. (CMS Collab.) Eur. Phys. J. C 76:372 2016.
    [Google Scholar]
  102. 102.  Busza W Acta Phys. Polon. B 35:2873 2004.
    [Google Scholar]
  103. 103.  Adam J et al. (ALICE Collab.) Phys. Lett. B 760:720 2016.
    [Google Scholar]
  104. 104.  Adam J et al. (ALICE Collab.) Nat. Phys. 13:535 2017.
    [Google Scholar]
  105. 105.  Bozek P, Broniowski W Phys. Rev. C 88:014903 2013.
    [Google Scholar]
  106. 106.  Aaboud M et al. (ATLAS Collab.) Phys. Rev. C 96:024908 2017.
    [Google Scholar]
  107. 107.  Niemi H, Eskola KJ, Paatelainen R Phys. Rev. C 93:024907 2016.
    [Google Scholar]
  108. 108.  Aamodt K et al. (ALICE Collab.) Phys. Rev. Lett. 107:032301 2011.
    [Google Scholar]
  109. 109.  Aad G et al. (ATLAS Collab.) J. High Energy Phys 1311:183 2013.
    [Google Scholar]
  110. 110.  Rischke D, Levin G Nucl. Phys. A 750:1 2005.
    [Google Scholar]
  111. 111. BRAHMS Collab., PHOBOS Collab., STAR Collab., PHENIX Collab. Nucl. Phys. A 757:1 2005.
    [Google Scholar]
  112. 112.  Molnar D, Gyulassy M Nucl. Phys. A 697:495 2002. Erratum Nucl. Phys. A 703:893 2002.
    [Google Scholar]
  113. 113.  Xu Z, Greiner C Phys. Rev. Lett. 100:172301 2008.
    [Google Scholar]
  114. 114.  Lin ZW et al. Phys. Rev. C 72:064901 2005.
    [Google Scholar]
  115. 115.  Ackermann KH et al. (STAR Collab.) Phys. Rev. Lett. 86:402 2001.
    [Google Scholar]
  116. 116.  Ollitrault JY, Poskanzer AM, Voloshin SA Phys. Rev. C 80:014904 2009.
    [Google Scholar]
  117. 117.  Adams J et al. (STAR Collab.) Phys. Rev. Lett. 92:052302 2004.
    [Google Scholar]
  118. 118.  Chatrchyan S et al. (CMS Collab.) Phys. Rev. C 89:044906 2014.
    [Google Scholar]
  119. 119.  Huovinen P, Petreczky P Nucl. Phys. A 837:26 2010.
    [Google Scholar]
  120. 120.  Pratt S, Sangaline E, Sorensen P, Wang H Phys. Rev. Lett. 114:202301 2015.
    [Google Scholar]
  121. 121.  Baier R, Romatschke P Eur. Phys. J. C 51:677 2007.
    [Google Scholar]
  122. 122.  Shen C et al. Proceedings of the 26th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions (Quark Matter 2017) U Heinz, O Evdokimov, P Jacobs 796 Amsterdam: Elsevier 2017.
    [Google Scholar]
  123. 123.  York MA, Moore GD Phys. Rev. D 79:054011 2009.
    [Google Scholar]
  124. 124.  Cooper F, Frye G Phys. Rev. D 10:186 1974.
    [Google Scholar]
  125. 125.  van der Schee W, Romatschke P, Pratt S Phys. Rev. Lett. 111:222302 2013.
    [Google Scholar]
  126. 126.  Romatschke P, Romatschke U Phys. Rev. Lett. 99:172301 2007.
    [Google Scholar]
  127. 127.  Schenke B, Jeon S, Gale C Phys. Rev. Lett. 106:042301 2011.
    [Google Scholar]
  128. 128.  Alver B, Roland G Phys. Rev. C 81:054905 2010. Erratum Phys. Rev. C 82:039903 2010.
    [Google Scholar]
  129. 129.  Ryu S et al. Phys. Rev. Lett. 115:132301 2015.
    [Google Scholar]
  130. 130.  Niemi H, Denicol GS, Holopainen H, Huovinen P Phys. Rev. C 87:054901 2013.
    [Google Scholar]
  131. 131.  Bernhard JE et al. Phys. Rev. C 94:024907 2016.
    [Google Scholar]
  132. 132.  Arnold PB, Moore GD, Yaffe LG J. High Energy Phys. 0011:001 2000.
    [Google Scholar]
  133. 133.  Heller MP, Spalinski M Phys. Rev. Lett. 115:072501 2015.
    [Google Scholar]
  134. 134.  Denicol GS, Noronha J arXiv:1711.01657 [nucl-th] 2017.
  135. 135.  Arnold P, Romatschke P, van der Schee W J. High Energy Phys. 1410:110 2014.
    [Google Scholar]
  136. 136.  Chesler PM, Kilbertus N, van der Schee W J. High Energy Phys. 11:135 2015.
    [Google Scholar]
  137. 137.  Kurkela A Nucl. Phys. A 956:136 2016.
    [Google Scholar]
  138. 138.  Casalderrey-Solana J, Heller MP, Mateos D, van der Schee W Phys. Rev. Lett. 111:181601 2013.
    [Google Scholar]
  139. 139.  McLerran LD, Venugopalan R Phys. Rev. D 49:2233 1994.
    [Google Scholar]
  140. 140.  Iancu E Proceedings of the 2011 European School of High-Energy Physics (ESHEP 2011) C Grojean, M Mulders 197 Geneva: CERN 2014.
    [Google Scholar]
  141. 141.  Baier R, Mueller AH, Schiff D, Son DT Phys. Lett. B 502:51 2001.
    [Google Scholar]
  142. 142.  Baier R, Mueller AH, Schiff D, Son DT Phys. Lett. B 539:46 2002.
    [Google Scholar]
  143. 143.  Berges J, Boguslavski K, Schlichting S, Venugopalan R Phys. Rev. D 89:074011 2014.
    [Google Scholar]
  144. 144.  Kurkela A, Zhu Y Phys. Rev. Lett. 115:182301 2015.
    [Google Scholar]
  145. 145.  Horowitz GT, Hubeny VE Phys. Rev. D 62:024027 2000.
    [Google Scholar]
  146. 146.  Chesler PM, Yaffe LG Phys. Rev. D 82:026006 2010.
    [Google Scholar]
  147. 147.  Heller MP, Janik RA, Witaszczyk P Phys. Rev. Lett. 108:201602 2012.
    [Google Scholar]
  148. 148.  Heller MP, Mateos D, van der Schee W, Trancanelli D Phys. Rev. Lett. 108:191601 2012.
    [Google Scholar]
  149. 149.  Maldacena JM Int. J. Theor. Phys. 38:1113 1999.
    [Google Scholar]
  150. 150.  Chesler PM, Yaffe LG Phys. Rev. Lett. 106:021601 2011.
    [Google Scholar]
  151. 151.  Chesler PM, Yaffe LG J. High Energy Phys. 10:070 2015.
    [Google Scholar]
  152. 152.  Casalderrey-Solana J, Mateos D, van der Schee W, Triana M J. High Energy Phys. 09:108 2016.
    [Google Scholar]
  153. 153.  Attems M et al. arXiv:1604.06439 [hep-th] 2016.
  154. 154.  Grozdanov S, van der Schee W Phys. Rev. Lett. 119:011601 2017.
    [Google Scholar]
  155. 155.  Waeber S, Schaefer A, Vuorinen A, Yaffe LG J. High Energy Phys. 11:087 2015.
    [Google Scholar]
  156. 156.  Habich M, Nagle J, Romatschke P arXiv:1409.0040 [nucl-th] 2014.
  157. 157.  Keegan L, Kurkela A, Mazeliauskas A, Teaney D J. High Energy Phys. 08:171 2016.
    [Google Scholar]
  158. 158.  Schenke B, Tribedy P, Venugopalan R Phys. Rev. Lett. 108:252301 2012.
    [Google Scholar]
  159. 159.  Gale C et al. Phys. Rev. Lett. 110:012302 2013.
    [Google Scholar]
  160. 160.  Accardi A et al. Eur. Phys. J. A 52:268 2016.
    [Google Scholar]
  161. 161.  Sjostrand T, Mrenna S, Skands PZ Comput. Phys. Commun. 178:852 2008.
    [Google Scholar]
  162. 162.  Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 712:176 2012.
    [Google Scholar]
  163. 163.  Aaboud M et al. (ATLAS Collab.) arXiv:1805.05635 [nucl-ex] 2018.
  164. 164.  Casalderrey-Solana J et al. J. High Energy Phys. 03:135 2017.
    [Google Scholar]
  165. 165.  Adare A et al. arXiv:1501.06197 [nucl-ex] 2015.
  166. 166.  Adcox K et al. (PHENIX Collab.) Phys. Rev. Lett. 88:022301 2002.
    [Google Scholar]
  167. 167.  Spousta M, Cole B Eur. Phys. J. C 76:50 2016.
    [Google Scholar]
  168. 168.  Milhano JG, Zapp KC Eur. Phys. J. C 76:288 2016.
    [Google Scholar]
  169. 169.  Chesler PM, Rajagopal K J. High Energy Phys. 05:098 2016.
    [Google Scholar]
  170. 170.  Rajagopal K, Sadofyev AV, van der Schee W Phys. Rev. Lett. 116:211603 2016.
    [Google Scholar]
  171. 171.  Khachatryan V et al. (CMS Collab.) J. High Energy Phys 11:055 2016.
    [Google Scholar]
  172. 172.  Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 776:195 2018.
    [Google Scholar]
  173. 173.  Chesler PM, Rajagopal K Phys. Rev. D 90:025033 2014.
    [Google Scholar]
  174. 174.  Casalderrey-Solana J et al. J. High Energy Phys 10:019 2014. Erratum J. High Energy Phys. 09:175 2015.
    [Google Scholar]
  175. 175.  Casalderrey-Solana J et al. J. High Energy Phys. 03:053 2016.
    [Google Scholar]
  176. 176.  Milhano JG, Wiedemann UA, Zapp KC arXiv:1707.04142 [hep-ph] 2017.
  177. 177.  Chen W et al. Phys. Lett. B 777:86 2018.
    [Google Scholar]
  178. 178.  Cao S et al. (JETSCAPE Collab.) Phys. Rev. C 96:024909 2017.
    [Google Scholar]
  179. 179.  Hulcher Z, Pablos D, Rajagopal K arXiv:1707.05245 [hep-ph] 2017.
  180. 180.  Sirunyan AM et al. (CMS Collab.) arXiv:1708.09429 [nucl-ex] 2017.
  181. 181.  Acharya S et al. (ALICE Collab.) Phys. Lett. B 776:249 2018.
    [Google Scholar]
  182. 182.  Kauder K (STAR Collab.) Nucl. Phys. A 967:516 2017.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101917-020852
Loading
/content/journals/10.1146/annurev-nucl-101917-020852
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error