1932

Abstract

Machine learning has played an important role in the analysis of high-energy physics data for decades. The emergence of deep learning in 2012 allowed for machine learning tools which could adeptly handle higher-dimensional and more complex problems than previously feasible. This review is aimed at the reader who is familiar with high-energy physics but not machine learning. The connections between machine learning and high-energy physics data analysis are explored, followed by an introduction to the core concepts of neural networks, examples of the key results demonstrating the power of deep learning for analysis of LHC data, and discussion of future prospects and concerns.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101917-021019
2018-10-19
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/nucl/68/1/annurev-nucl-101917-021019.html?itemId=/content/journals/10.1146/annurev-nucl-101917-021019&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Hocker A et al. Proc. Sci. ACAT:040 2007.
  2. 2.  Krizhevsky A, Sutskever I, Hinton GEIn Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 12)1097 New York: Curran 2012.
    [Google Scholar]
  3. 3.  Russakovsky O et al. Int. J. Comput. Vis. 115:211 2015.
  4. 4.  LeCun Y, Bengio Y, Hinton G Nature 521:436 2015.
  5. 5.  Schmidhuber J Neural Netw. 61:85 2015.
  6. 6.  Sjöstrand T, Mrenna S, Skands PZ J. High Energy Phys. 0605:026 2006.
  7. 7.  Bahr M et al. Eur. Phys. J. C 58:639 2008.
  8. 8.  Alwall J et al. J. High Energy Phys. 07:079 2014.
  9. 9.  Gleisberg T et al. J. High Energy Phys. 02:007 2009.
  10. 10.  Agostinelli S et al. Nucl. Instrum. Methods A 506:250 2003.
  11. 11. Keras Document. Team. Keras Software package https://keras.io/ 2018.
  12. 12. LISA Lab. Theano Software package http://deeplearning.net/software/theano/ 2018.
  13. 13. TensorFlow Dev. Team. TensorFlow Software package https://www.tensorflow.org/ 2018.
  14. 14.  Hornik K, Stinchcombe M, White H Neural Netw. 2:359 1989.
  15. 15.  Hochreiter S Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 6:107–116 1998.
  16. 16.  Bengio Y, Simard P, Frasconi P Neural Netw. 5:157 1994.
  17. 17.  Hinton G et al. arXiv:1207.0580 [cs.NE] 2012.
  18. 18.  Hinton GE, Osindero S, Teh YW Neural Comput. 18:1527 2006.
  19. 19.  Bengio Y, Lamblin P, Popovici D, Larochelle H Proceedings of the 19th Annual Conference on Advances in Neural Information Processing Systems (NIPS 06) B Schölkopf, J Platt, T Hoffman153 Cambridge, MA: MIT Press 2007.
    [Google Scholar]
  20. 20.  Goodfellow I, Bengio Y, Courville A Deep Learning Cambridge, MA: MIT Press http://www.deeplearningbook.org 2016.
  21. 21.  Lecun Y, Bottou L, Bengio Y, Haffner P Proc. IEEE 86:2278 1998.
  22. 22.  Ioffe S, Szegedy C Proceedings of the 32nd International Conference on Machine Learning448 proceedings.mlr.press: PMLR 2015.
  23. 23.  He K, Zhang X, Ren S, Sun J Proceedings of the IEEE Conference on Computer Vision and Pattern Recognitionp 1026 Piscataway, NJ: IEEE 2016.
  24. 24.  Thulasiraman K, Swamy MNS Graphs: Theory and Algorithms New York: Wiley 1992.
  25. 25.  Hochreiter S, Schmidhuber J Neural Comput. 9:1735 1997.
  26. 26.  Cho K et al. arXiv:1406.1078 [cs] 2014.
  27. 27.  Aad G et al. J. Instrum. 9:P09009 2014.
  28. 28.  Peterson C Nucl. Instrum. Methods A 279:537 1989.
  29. 29.  Abramowicz H, Caldwell A, Sinkus R Nucl. Instrum. Methods A 365:508 1995.
  30. 30. CMS Collab. Eur. Phys. J. C 74:3076 2014.
  31. 31.  Abazov VM et al. Phys. Rev. D 71:072004 2005.Erratum. Phys. Rev. D 77:039901 2008.
  32. 32. DELPHI Collab. Phys. Lett. B 295:383 1992.
  33. 33.  Kohne JK et al. Nucl. Instrum. Methods A 389:128 1997.
  34. 34. D0 Collab. Phys. Lett. B 517:282 2001.
  35. 35. CDF Collab. Phys. Rev. Lett. 104:141801 2010.
  36. 36.  Baldi P, Sadowski P, Whiteson D Nat. Commun. 5:4308 2014.
  37. 37.  Santos R et al. J. Instrum. 12:P04014 2017.
  38. 38.  Louppe G, Cranmer K, Pavez J J. Open Source Softw. 1:11 2016.
  39. 39.  Baldi P et al. Eur. Phys. J. C 76:235 2016.
  40. 40.  Behnke T, Charlton DG Phys. Scr. 52:133 1995.
  41. 41.  Peterson C, Rögnvaldsson T, Lönnblad L Comput. Phys. Commun. 81:185 1994.
  42. 42. CMS Collab. Tech. rep. CMS-PAS-BTV-15-001, CERN, Geneva 2016.
  43. 43. ATLAS Collab. J. Instrum. 11:P04008 2016.
  44. 44. ATLAS Collab. Tech. rep. ATL-PHYS-PUB-2017-013, CERN, Geneva 2017.
  45. 45.  Larkoski AJ, Moult I, Nachman B arXiv:1709.04464 [hep-ph] 2017.
  46. 46.  de Oliveira L et al. J. High Energy Phys. 07:069 2016.
  47. 47.  Cogan J, Kagan M, Strauss E, Schwarztman A J. High Energy Phys. 02:118 2015.
  48. 48.  Almeida LG et al. J. High Energy Phys. 07:086 2015.
  49. 49.  Baldi P et al. Phys. Rev. D 93:094034 2016.
  50. 50.  Barnard J, Dawe EN, Dolan MJ, Rajcic N Phys. Rev. D 95:014018 2017.
  51. 51.  Komiske PT, Metodiev EM, Schwartz MD J. High Energy Phys. 01:110 2017.
  52. 52.  Acciarri R et al. J. Instrum. 12:P03011 2017.
  53. 53.  Aurisano A et al. J. Instrum. 11:P09001 2016.
  54. 54.  Guest D et al. Phys. Rev. D 94:112002 2016.
  55. 55.  CMS Collab J. Instrum. 12:P10003 2017.
  56. 56. ATLAS Collab. Tech. rep. ATL-PHYS-PUB-2017-003, CERN, Geneva 2017.
  57. 57. CMS Collab. Tech. rep. CMS-DP-2017-012, CERN, Geneva 2017.
  58. 58. CMS Collab. Tech. rep. CMS-DP-2017-005, CERN, Geneva 2017.
  59. 59. CMS Collab. Tech. rep. CMS-DP-2017-049, CERN, Geneva 2017.
  60. 60.  Pearkes J, Fedorko W, Lister A, Gay C arXiv:1704.02124 [hep-ex] 2017.
  61. 61.  Egan S et al. arXiv:1711.09059 [hep-ex] 2017.
  62. 62. CMS Collab. Presented at the Workshop on Deep Learning for Physical Sciences of the 31st Annual Conference on Advances in Neural Information Processing Systems (NIPS 17), Long Beach, CA 2017.
  63. 63.  Louppe G, Cho K, Becot C, Cranmer K arXiv:1702.00748 [hep-ph] 2017.
  64. 64.  Cheng T arXiv:1711.02633 [hep-ph] 2017.
  65. 65.  Henrion I et al. Presented at the Workshop on Deep Learning for Physical Sciences of the 31st Annual Conference on Advances in Neural Information Processing Systems (NIPS 17), Long Beach, CA 2017.
  66. 66.  Bronstein MM et al. arXiv:1611.08097 [cs.CV] 2016.
  67. 67. ATLAS Collab. Eur. Phys. J. C 77:673 2017.
  68. 68.  Salzburger A Tech. rep. ATL-SOFT-PROC-2015-056.7, CERN, Geneva 2015.
  69. 69.  Stahl M J. Phys. Conf. Ser. 898:042042 2017.
  70. 70.  Machado Miguens J Tech. rep. ATL-DAQ-PROC-2016-025, CERN, Geneva 2016.
  71. 71.  Adam W, Fruhwirth R, Strandlie A, Todorov T J. Phys. G 31:9 2005.
  72. 72. ATLAS Collab. Tech. rep. ATLAS-CONF-2012-047, CERN, Geneva 2012.
  73. 73.  Salzburger A J. Phys. Conf. Ser. 664:072042 2015.
  74. 74.  Krishnan RG, Shalit U, Sontag D. arXiv:1511.05121 [stat.ML] 2015.
  75. 75.  Krishnan RG, Shalit U, Sontag D Proceedings of the 31st AAAI Conference on Artificial Intelligencep 2101 Menlo Park, CA: AAAI 2017.
  76. 76.  Farrell S et al. Eur. Phys. J. Web Conf. 150:00003 2017.
  77. 77.  Farrell S et al. Presented at the Workshop on Deep Learning for Physical Sciences of the 31st Annual Conference on Advances in Neural Information Processing Systems (NIPS 17), Long Beach, CA. https://dl4physicalsciences.github.io/files/nips_dlps_2017_28.pdf 2017.
  78. 78.  Amrouche S et al. Eur. Phys. J. Web Conf. 150:00015 2017.
  79. 79. ATLAS Collab. Tech. rep. ATL-PHYS-PUB-2010-013, ATL-COM-PHYS-2010-838, CERN, Geneva 2010.
  80. 80.  Larochelle H, Murray I Proceedings of the 14th International Conference on Artificial Intelligence and Statisticsp 29 Cambridge, MA: MIT Press 2011.
  81. 81.  Jimenez Rezende D, Mohamed S. arXiv:1505.05770 [stat.ML] 2015.
  82. 82.  Dinh L, Krueger D, Bengio Y arXiv:1410.8516 [cs.LG] 2014.
  83. 83.  Cranmer K, Pavez J, Louppe G arXiv:1506.02169 [stat.AP] 2015.
  84. 84.  Kingma DP, Salimans T, Welling M arXiv:1606.04934 2016.
  85. 85.  Papamakarios G, Murray I, Pavlakou T Proceedings of the 31st Annual Conference on Advances in Neural Information Processing Systems (NIPS 17)2335 New York: Curran
    [Google Scholar]
  86. 86.  Paganini M, de Oliveira L, Nachman B arXiv:1705.02355 [hep-ex] 2017.
  87. 87.  de Oliveira L, Paganini M, Nachman B arXiv:1701.05927 [stat.ML] 2017.
  88. 88.  Elmer P, Neubauer M, Sokoloff MD arXiv:1712.06592 [physics.comp-ph] 2017.
  89. 89.  Alves AA Jr. et al. arXiv:1712.06982 [physics.comp-ph] 2017.
  90. 90.  Aaltonen T et al. Phys. Rev. Lett. 102:152001 2009.
  91. 91.  Stevens J, Williams M J. Instrum. 8:P12013 2013.
  92. 92.  Ajakan H et al. arXiv:1412.4446 [stat.ML] 2014.
  93. 93.  Louppe G, Kagan M, Cranmer K arXiv:1611.01046 [stat.ME] 2016.
  94. 94.  Shimmin C et al. arXiv:1703.03507 [hep-ex] 2017.
  95. 95.  Snoek J, Larochelle H, Adams RP. arXiv:1206.2944 [stat.ML] 2012.
  96. 96.  Head T et al. Scikit-Optimize. Software package https://scikit-optimize.github.io/ 2017.
  97. 97.  Staines J, Barber D. arXiv:1212.4507 [stat] 2012.
  98. 98.  Louppe G, Cranmer K. arXiv:1707.07113 [stat] 2017.
  99. 99.  Chang S, Cohen T, Ostdiek B arXiv:1709.10106 [hep-ph] 2017.
  100. 100.  Cranmer K, Yavin I J. High Energy Phys. 04:038 2011.
  101. 101.  Cranmer K, Heinrich L J. Phys. Conf. Ser. 898:102019 2017.
  102. 102.  Dery LM, Nachman B, Rubbo F, Schwartzman A J. High Energy Phys. 05:145 2017.
  103. 103.  Metodiev EM, Nachman B, Thaler J J. High Energy Phys. 10:174 2017.
  104. 104. ONNX Dev. Team. Open Neural Network Exchange (ONNX). Software package https://github.com/onnx/onnx 2017.
  105. 105.  Guest DH et al. lwtnn (version 2.6) Software package https://github.com/lwtnn/lwtnn/releases 2017.
  106. 106.  Tran D et al. Edward. Software package http://edwardlib.org 2017.
  107. 107.  Tran D et al. arXiv:1610.09787 [stat] 2016.
  108. 108.  Pyro Dev. Team. Pyro Software package http://pyro.ai 2017.
  109. 109.  Frate M et al. arXiv:1709.05681 [physics.data-an] 2017.
  110. 110.  Luo C, Shrivastava A arXiv:1706.06664 [cs.DB] 2017.
  111. 111.  Ilten P, Williams M, Yang Y J. Instrum. 12:P04028 2017.
  112. 112.  Bertone G et al. arXiv:1611.02704 [hep-ph] 2016.
  113. 113.  Caron S et al. Eur. Phys. J. C 77:257 2017.
  114. 114.  Cranmer K, Louppe G J. Brief Ideas http://doi.org10.5281/zenodo.198541 2016.
  115. 115.  Le TA, Baydin AG, Wood F arXiv:1610.09900 [cs.AI] 2016.
  116. 116.  Casado ML et al. Presented at the Workshop on Deep Learning for Physical Sciences of the 31st Annual Conference on Advances in Neural Information Processing Systems (NIPS 17), Long Beach, CA 2017.
/content/journals/10.1146/annurev-nucl-101917-021019
Loading
/content/journals/10.1146/annurev-nucl-101917-021019
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error