
Full text loading...
Direct dark matter detection experiments will soon be sensitive to neutrinos from astrophysical sources, including the Sun, the atmosphere, and supernovae, which will set an important benchmark and open a new window into neutrino physics and astrophysics. The detection of these neutrinos will be complementary to accelerator- and reactor-based experiments that study neutrinos over the same energy range. We review the physics and astrophysics that can be extracted from the detection of these neutrinos, highlighting the potential of identifying New Physics in the form of light mediators that arise from kinetic mixing and hidden sectors, as well as ∼eV-scale sterile neutrinos. We discuss how the physics reach of these experiments will complement searches for New Physics at the LHC and dedicated neutrino experiments.
Article metrics loading...
Full text loading...
Literature Cited
Data & Media loading...