1932

Abstract

This article discusses some of the history of parity-violation experiments that culminated in the experiment, which provided the first determination of the proton's weak charge . The guiding principles necessary to the success of that experiment are outlined, followed by a brief description of the experiment. Several consistent methods used to determine from the asymmetry measured in the experiment are explained in detail. The weak mixing angle sin2θ determined from is compared with results from other experiments. A description of the procedure for using the result on the proton to set TeV-scale limits for new parity-violating semileptonic physics beyond the Standard Model (BSM) is presented. By also considering atomic parity-violation results on cesium, the article shows how this result can be generalized to set limits on BSM physics, which couples to any combination of valence quark flavors. Finally, the discovery space available to future weak-charge measurements is explored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023633
2019-10-19
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/nucl/69/1/annurev-nucl-101918-023633.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023633&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aad G Phys. Lett. B 716:1 2012.
    [Google Scholar]
  2. 2. 
    Chatrchyan S Phys. Lett. B 716:30 2012.
    [Google Scholar]
  3. 3. 
    Erler J, Su S. Prog. Part. Nucl. Phys. 71:119 2013.
    [Google Scholar]
  4. 4. 
    Erler J Annu. Rev. Nucl. Part. Sci. 64:269 2014.
    [Google Scholar]
  5. 5. 
    Potter JM Phys. Rev. Lett. 33:1307 1974.
    [Google Scholar]
  6. 6. 
    Prescott CY Phys. Lett. B 84:524 1979.
    [Google Scholar]
  7. 7. 
    Anthony PL Phys. Rev. Lett. 95:08161 2005.
    [Google Scholar]
  8. 8. 
    Androić D Nature 557:207 2018.
    [Google Scholar]
  9. 9. 
    Allison T Nucl. Instrum. Methods A 781:105 2015.
    [Google Scholar]
  10. 10. 
    Duvall WS Precision measurement of the proton's weak charge using parity-violating electron scattering PhD thesis, Va. Polytech. Inst. State Univ., Blacksburg 2017.
    [Google Scholar]
  11. 11. 
    Myers KE The first determination of the proton's weak charge through parity-violating asymmetry measurements in elastic e + p and e + Al scattering PhD thesis, George Wash. Univ., Washington, DC 2012.
    [Google Scholar]
  12. 12. 
    Magee JA A measurement of the parity-violating asymmetry in aluminum and its contribution to a measurement of the proton's weak charge. PhD thesis, Coll. William Mary, Williamsburg, VA 2016.
    [Google Scholar]
  13. 13. 
    Bartlett KD First measurements of the parity-violating and beam-normal single-spin asymmetries in elastic electron–aluminum scattering. PhD thesis, Coll. William Mary, Williamsburg, VA ( 2018.
    [Google Scholar]
  14. 14. 
    Kargiantoulakis E A precision test of the standard model via parity-violating electron scattering in the Qweak experiment. PhD thesis, Univ. Va., Charlottesville 2015.
    [Google Scholar]
  15. 15. 
    Jones DC Measuring the weak charge of the proton via elastic electron–proton scattering. PhD thesis, Univ. Va., Charlottesville 2015.
    [Google Scholar]
  16. 16. 
    Gray VM Determination of the kinematics of the Qweak experiment and investigation of an atomic hydrogen Møller polarimeter. PhD thesis, Coll. William Mary, Williamsburg, VA 2018.
    [Google Scholar]
  17. 17. 
    Hauger M Nucl. Instrum. Methods A 462:382 2001.
    [Google Scholar]
  18. 18. 
    Narayan A Phys. Rev. X 6:011013 2016.
    [Google Scholar]
  19. 19. 
    Ito TM Phys. Rev. Lett. 92:102003 2004.
    [Google Scholar]
  20. 20. 
    Spayde DT Phys. Lett. B 583:79 2004.
    [Google Scholar]
  21. 21. 
    Maas FE Phys. Rev. Lett. 93:022002 2004.
    [Google Scholar]
  22. 22. 
    Maas FE Phys. Rev. Lett. 94:152001 2005.
    [Google Scholar]
  23. 23. 
    Baunack S Phys. Rev. Lett. 102:151803 2009.
    [Google Scholar]
  24. 24. 
    Balaguer Ríos D Phys. Rev. D 94:051101 2016.
    [Google Scholar]
  25. 25. 
    Armstrong DS Phys. Rev. Lett. 95:092001 2005.
    [Google Scholar]
  26. 26. 
    Androić D Phys. Rev. Lett. 104:012001 2010.
    [Google Scholar]
  27. 27. 
    Aniol KA Phys. Rev. C 69:065501 2004.
    [Google Scholar]
  28. 28. 
    Aniol KA Phys. Lett. B 635:275 2006.
    [Google Scholar]
  29. 29. 
    Aniol KA Phys. Rev. Lett. 96:022003 2006.
    [Google Scholar]
  30. 30. 
    Acha A Phys. Rev. Lett. 98:032301 2007.
    [Google Scholar]
  31. 31. 
    Ahmed Z Phys. Rev. Lett. 108:102001 2012.
    [Google Scholar]
  32. 32. 
    Androić D Phys. Rev. Lett. 111:141803 2013.
    [Google Scholar]
  33. 33. 
    Arrington J, Sick I. Phys. Rev. C 76:035201 2007.
    [Google Scholar]
  34. 34. 
    Zhu SL, Puglia SJ, Holstein BR, Ramsey-Musolf MJ. Phys. Rev. D 62:033008 2000.
    [Google Scholar]
  35. 35. 
    Tanabashi M Phys. Rev. D 98:030001 2018.
    [Google Scholar]
  36. 36. 
    Hall NL Phys. Lett. B 753:221 2016.
    [Google Scholar]
  37. 37. 
    Blunden PG, Melnitchouk W, Thomas AW. Phys. Rev. Lett. 107:081801 2011.
    [Google Scholar]
  38. 38. 
    Blunden PG, Melnitchouk W, Thomas AW. Phys. Rev. Lett. 109:262301 2012.
    [Google Scholar]
  39. 39. 
    Gorchtein M, Horowitz CJ, Ramsey-Musolf MJ. Phys. Rev. C 84:015502 2011.
    [Google Scholar]
  40. 40. 
    Gorchtein M, Spiesberger H, Zhang X. Phys. Lett. B 752:135 2016.
    [Google Scholar]
  41. 41. 
    Rislow BC, Carlson CE. Phys. Rev. D 83:113007 2011.
    [Google Scholar]
  42. 42. 
    Hall NL Phys. Rev. D 88:013011 2013.
    [Google Scholar]
  43. 43. 
    Hall NL Phys. Lett. B 753:221 2016.
    [Google Scholar]
  44. 44. 
    Gorchtein M, Horowitz CJ, Ramsey-Musolf MJ. Phys. Rev. C 84:015502 2011.
    [Google Scholar]
  45. 45. 
    Green J Phys. Rev. D 92:031501 2015.
    [Google Scholar]
  46. 46. 
    Sufian RS Phys. Rev. Lett. 118:042001 2017.
    [Google Scholar]
  47. 47. 
    Young RD, Roche J, Carlini RD, Thomas AW. Phys. Rev. Lett. 97:102002 2006.
    [Google Scholar]
  48. 48. 
    Liu J, McKeown RD, Ramsey-Musolf MJ. Phys. Rev. C 76:025202 2007.
    [Google Scholar]
  49. 49. 
    Higinbotham DW Phys. Rev. C 93:055207 2016.
    [Google Scholar]
  50. 50. 
    Griffioen K, Carlson C, Maddox S. Phys. Rev. C 93:065207 2016.
    [Google Scholar]
  51. 51. 
    Zhan X Phys. Lett. B 705:59 2011.
    [Google Scholar]
  52. 52. 
    Antognini A Science 339:417 2013.
    [Google Scholar]
  53. 53. 
    Kelly JJ. Phys. Rev. C 70:068202 2004.
    [Google Scholar]
  54. 54. 
    Galster S Nucl. Phys. B 32:221 1971.
    [Google Scholar]
  55. 55. 
    Venkat S, Arrington J, Miller GA, Zhan X. Phys. Rev. C 83:015203 2011.
    [Google Scholar]
  56. 56. 
    Erler J, Ramsey-Musolf MJ. Phys. Rev. D 72:073003 2005.
    [Google Scholar]
  57. 57. 
    Erler J, Ferro-Hernández R. J. High Energy Phys. 1803:196 2018.
    [Google Scholar]
  58. 58. 
    Patrignani C Chin. Phys. C 40:100001 2016.
    [Google Scholar]
  59. 59. 
    Ramsey-Musolf MJ. Phys. Rev. C 60:015501 1999.
    [Google Scholar]
  60. 60. 
    Wood CS Science 275:1759 1997.
    [Google Scholar]
  61. 61. 
    Dzuba VA, Berengut JC, Flambaum VV, Roberts B. Phys. Rev. Lett. 109:203003 2012.
    [Google Scholar]
  62. 62. 
    Zeller GP Phys. Rev. Lett. 88:091802 2002.
    [Google Scholar]
  63. 63. 
    Bentz W, Cloët IC, Londergan JT, Thomas AW. Phys. Lett. B 693:462 2010.
    [Google Scholar]
  64. 64. 
    Langacker P. Nucl. Phys. B Proc. Suppl. 38:152 1995.
    [Google Scholar]
  65. 65. 
    Becker D Eur. Phys. J. A 54:208 2018.
    [Google Scholar]
  66. 66. 
    Benesch J et al. arXiv:1411.4088 [nucl-ex] 2014.
  67. 67. 
    Jefferson Lab PVDIS Collab. Nature 506:67 2014.
    [Google Scholar]
  68. 68. 
    Chen JP et al. arXiv:1409:7741 [nucl-ex] 2014.
  69. 69. 
    Zhao YX et al. arXiv:1701:02780 [nucl-ex] 2017.
  70. 70. 
    Young RD, Carlini RD, Thomas AW, Roche J. Phys. Rev. Lett. 99:122003 2007.
    [Google Scholar]
  71. 71. 
    Eichten E, Lane KD, Peskin ME. Phys. Rev. Lett. 50:811 1983.
    [Google Scholar]
  72. 72. 
    Erler J, Horowitz CJ, Mantry S, Souder PA. Annu. Rev. Nucl. Part. Sci. 64:269 2014.
    [Google Scholar]
  73. 73. 
    Bennett SC, Wieman CE. Phys. Rev. Lett. 82:2484 1999.
    [Google Scholar]
  74. 74. 
    Edwards NH Phys. Rev. Lett. 74:2654 1995.
    [Google Scholar]
  75. 75. 
    MacPherson MJD Phys. Rev. Lett. 67:2784 1991.
    [Google Scholar]
  76. 76. 
    Meekhof DM Phys. Rev. Lett. 71:3442 1993.
    [Google Scholar]
  77. 77. 
    Hikasa K et al. (Part. Data Group). 112. Searches for quarks and lepton compositeness. See Ref. 35. http://pdg.lbl.gov/2018/reviews/rpp2018-rev-searches-quark-lep-compositeness.pdf (2018)
    [Google Scholar]
  78. 78. 
    Tanabashi M et al. (Part. Data Group). PDGLive: Searches for quark and lepton compositeness. See Ref. 35. http://pdglive.lbl.gov/Particle.action?node=S054 (2018)
    [Google Scholar]
  79. 79. 
    Rolli S et al. (Part. Data Group). 115. Leptoquarks. See Ref. 35. http://pdg.lbl.gov/2018/reviews/rpp2018-rev-leptoquark-quantum-numbers.pdf (2018)
    [Google Scholar]
  80. 80. 
    Tanabashi M et al. (Part. Data Group). PDGLive: Searches for new heavy bosons (, , leptoquarks, etc.). See Ref. 35. http://pdglive.lbl.gov/Particle.action?node=S056 (2018)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101918-023633
Loading
/content/journals/10.1146/annurev-nucl-101918-023633
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error