1932

Abstract

A well-established knowledge of nuclear phenomena including fission, reaction cross sections, and structure/decay properties is critical for applications ranging from the design of new reactors to nonproliferation to the production of radioisotopes for the diagnosis and treatment of illness. However, the lack of a well-quantified, predictive theoretical capability means that most nuclear observables must be measured directly and used to calibrate empirical models, which in turn provide the data needed for these applications. In many cases, either there is a lack of data needed to guide the models or the results of the different measurements are discrepant, leading to the development of evaluation methodologies to provide recommended values and uncertainties. In this review, we describe the nuclear data evaluation process and the international community that carries it out. We then discuss new measurements and improved theory and/or modeling needed to address future challenges in applied nuclear science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023708
2019-10-19
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/nucl/69/1/annurev-nucl-101918-023708.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023708&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pritychenko B et al. Nucl. Instrum. Methods A 640:213 2011.
    [Google Scholar]
  2. 2. 
    NNDC (Natl. Nucl. Data Cent.) XUNDL: Experimental Unevaluated Nuclear Data List Search and Retrieval Upton, NY: NNDC: Brookhaven Natl. Lab. https://www.nndc.bnl.gov/ensdf/ensdf/xundl.jsp (2019)
    [Google Scholar]
  3. 3. 
    Zerkin VV, Pritychenko B. Nucl. Instrum. Methods A 888:31 2018.
    [Google Scholar]
  4. 4. 
    Tepel JW. Comput. Phys. Commun. 33:129 1984.
    [Google Scholar]
  5. 5. 
    Brown DA, et al. Nucl. Data Sheets 148:1 2018.
    [Google Scholar]
  6. 6. 
    Mughabghab S Atlas of Neutron Resonances Amsterdam: Elsevier 2018.
    [Google Scholar]
  7. 7. 
    Firestone RB Nucl. Data Sheets 119:79 2014.
    [Google Scholar]
  8. 8. 
    Hurst AM, Bernstein LA, Chong-SA Compilation of the “Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons” by A. M. Demidov, L. I. Govor, Yu. K. Cherepantsev, M. R. Ahmed, S. Al-Najjar, M. A. Al-Amili, N. Al-Assafi, and N. Rammo. Tech. rep. LBNL-1007259, Lawrence Berkeley Natl. Lab., Berkeley, CA 2018.
    [Google Scholar]
  9. 9. 
    Capote R Nucl. Data Sheets 110:3107 2009.
    [Google Scholar]
  10. 10. 
    NNDC (Natl. Nucl. Data Cent) Nuclear Decay Data in the MIRD Format Upton, NY: NNDC Brookhaven Natl. Lab. https://www.nndc.bnl.gov/mird/ ( 2019.
    [Google Scholar]
  11. 11. 
    Gudkova O IAEA Isotope Browser app now available in multiple languages News release, Int. At. Energy Agency, Vienna 2017.
    [Google Scholar]
  12. 12. 
    Working Party on International Nuclear Data Evaluation Co-operation (WPEC). Working Party on International Nuclear Data Evaluation Co-operation (WPEC). https://www.oecd-nea.org/science/wpec/
  13. 13. 
    Herman M Nucl. Data Sheets 108:2655 2007.
    [Google Scholar]
  14. 14. 
    Iwamoto O Nucl. Data Sheets 131:259 2016.
    [Google Scholar]
  15. 15. 
    Kawano T, Talou P, Chadwick MB, Watanabe T. J. Nucl. Sci. Technol. 47:462 2010.
    [Google Scholar]
  16. 16. 
    Koning AJ, Rochman D. Nucl. Data Sheets 113:2841 2012.
    [Google Scholar]
  17. 17. 
    Wilkins BD, Steinberg EP, Chasman RR. Phys. Rev. C 14:1832 1976.
    [Google Scholar]
  18. 18. 
    Lemaître JF Phys. Rev. C 92:34617 2015.
    [Google Scholar]
  19. 19. 
    Möller P Phys. Rev. C 91:24310 2015.
    [Google Scholar]
  20. 20. 
    Ward DE Phys. Rev. C 95:24618 2017.
    [Google Scholar]
  21. 21. 
    Sierk AJ. Phys. Rev. C 96:34603 2017.
    [Google Scholar]
  22. 22. 
    Koonin SE, Nix JR. Phys. Rev. C 13:209 1976.
    [Google Scholar]
  23. 23. 
    Negele JW Phys. Rev. C 17:1098 1978.
    [Google Scholar]
  24. 24. 
    Tanimura Y, Lacroix D, Scamps G. Phys. Rev. C 92:34601 2015.
    [Google Scholar]
  25. 25. 
    Goddard P, Stevenson P, Rios A. Phys. Rev. C 93:14620 2016.
    [Google Scholar]
  26. 26. 
    Stetcu I, Bulgac A, Magierski P, Roche KJ. Phys. Rev. C 84:51309 2011.
    [Google Scholar]
  27. 27. 
    Bulgac A. Annu. Rev. Nucl. Part. Sci. 63:97 2013.
    [Google Scholar]
  28. 28. 
    Stetcu I Phys. Rev. Lett. 114:12701 2015.
    [Google Scholar]
  29. 29. 
    Bulgac A, Magierski P, Roche KJ, Stetcu I. Phys. Rev. Lett. 116:122504 2016.
    [Google Scholar]
  30. 30. 
    Berger JF, Girod M, Gogny D. Comput. Phys. Commun. 63:365 1991.
    [Google Scholar]
  31. 31. 
    Goutte H, Berger JF, Casoli P, Gogny D. Phys. Rev. C 71:24316 2005.
    [Google Scholar]
  32. 32. 
    Regnier D, Dubray N, Schunck N, Verrière M. Phys. Rev. C 93:54611 2016.
    [Google Scholar]
  33. 33. 
    Schmidt KH, Jurado B, Amouroux C, Schmitt C. Nucl. Data Sheets 131:107 2016.
    [Google Scholar]
  34. 34. 
    Litaize O, Serot O, Berge L. Eur. Phys. J. A 51:177 2015.
    [Google Scholar]
  35. 35. 
    Talou P, Kawano T, Stetcu I CGMF user manual Tech. rep. LA-UR-14-24031, Los Alamos Natl. Lab., Los Alamos, NM
    [Google Scholar]
  36. 36. 
    Randrup J, Vogt R. Phys. Rev. C 80:24601 2009.
    [Google Scholar]
  37. 37. 
    Verbeke JM, Randrup J, Vogt R. Comput. Phys. Commun. 222:263 2018.
    [Google Scholar]
  38. 38. 
    Bertsch GF, Loveland W, Nazarewicz W, Talou P. J. Phys. G 42:77001 2015.
    [Google Scholar]
  39. 39. 
    Petrov GA AIP Conf. Proc. 1175:289 2009.
    [Google Scholar]
  40. 40. 
    Jacquet D, Morjean M. Prog. Part. Nucl. Phys. 63:155 2009.
    [Google Scholar]
  41. 41. 
    Maruhn JA, Oberacker VE, Maruhn-Rezwani V. Phys. Rev. Lett. 44:1576 1980.
    [Google Scholar]
  42. 42. 
    Rowlands J, Nordborg C Report of the NEACRP/NEANDC Task Force on Evaluation Co-operation Tech. rep. NEACRP-A-1011, NEANDC-A-257, Nucl. Energy Agency, Washington, DC 1989.
    [Google Scholar]
  43. 43. 
    Maslov VM J. Korean Phys. Soc. 59:1337 2011.
    [Google Scholar]
  44. 44. 
    Chadwick MB Nucl. Data Sheets 148:189 2018.
    [Google Scholar]
  45. 45. 
    Bauge E Eur. Phys. J. A 48:113 2012.
    [Google Scholar]
  46. 46. 
    Chadwick MB Nucl. Data Sheets 118:1 2014.
    [Google Scholar]
  47. 47. 
    Batchelor R, Wyld K Neutron scattering by 235U and 239Pu for incident neutrons of 2, 3 and 4 MeV Aldermaston Lab. tech. rep. AWRE-O-55/69, Reading, UK 1969.
    [Google Scholar]
  48. 48. 
    Andreev VN. Neitronnaya Fiz. 1961:287 1961.
    [Google Scholar]
  49. 49. 
    Chiba G Paper presented at MCNP/ENDF/NJOY Workshop, Los Alamos, NM, Oct. 30–Nov. 1 2012.
  50. 50. 
    Bernstein L Phys. Rev. C 65:21601 2002.
    [Google Scholar]
  51. 51. 
    Younes W Phys. Rev. C 64:54613 2001.
    [Google Scholar]
  52. 52. 
    Fotiades N Phys. Rev. C 69:24601 2004.
    [Google Scholar]
  53. 53. 
    Bernstein LA et al. Measurement of severalPu(n,xn) partial gamma-ray cross sections for x()3using GEANIE at LANSCE/WNR Tech. rep., Lawrence Livermore Natl. Lab., Livermore, CA 2000.
    [Google Scholar]
  54. 54. 
    Chadwick M, Plompen A, Dupont E Nuclear Measurements, Evaluations and Applications (NEMEA-7): Collaborative International Evaluated Library Organisation (CIELO) Workshop Proceedings Tech. rep. NEA/NSC/DOC(2014)13, Organ. Econ. Co-op. Dev., Nucl. Energy Agency, Paris 2014.
    [Google Scholar]
  55. 55. 
    Daskalakis AM Ann. Nucl. Energy 73:455 2014.
    [Google Scholar]
  56. 56. 
    Harrig KP Nucl. Instrum. Methods A 877:359 2018.
    [Google Scholar]
  57. 57. 
    Kelly KJ Nucl. Instrum. Methods A 866:182 2017.
    [Google Scholar]
  58. 58. 
    Larsen AC, Goriely S. Phys. Rev. C 82:14318 2010.
    [Google Scholar]
  59. 59. 
    Larsen AC Acta Phys. Polon. B 46:509 2015.
    [Google Scholar]
  60. 60. 
    Laplace TA Phys. Rev. C 93:14323 2016.
    [Google Scholar]
  61. 61. 
    Guttormsen M Acta Phys. Polon. B 44:567 2013.
    [Google Scholar]
  62. 62. 
    Guttormsen M Phys. Rev. C 88:24307 2013.
    [Google Scholar]
  63. 63. 
    Guttormsen M Phys. Rev. C 89:14302 2014.
    [Google Scholar]
  64. 64. 
    Guttormsen M Eur. Phys. J. A 51:170 2015.
    [Google Scholar]
  65. 65. 
    Wiedeking M Phys. Rev. C 93:24303 2016.
    [Google Scholar]
  66. 66. 
    Chakravarty N, Sarkar PK, Ghosh S. Phys. Rev. C 45:1171 1992.
    [Google Scholar]
  67. 67. 
    Sudár S, Qaim SM. Phys. Rev. C 73:34613 2006.
    [Google Scholar]
  68. 68. 
    Chang K How to spot a nuclear bomb program? Look for ghostly particles. New York Times March 27 2018.
    [Google Scholar]
  69. 69. 
    Carr R, Dalnoki-Veress F, Bernstein A. Phys. Rev. Appl. 10:24014 2018.
    [Google Scholar]
  70. 70. 
    Cowan CL Science 124:103 1956.
    [Google Scholar]
  71. 71. 
    An FP Phys. Rev. Lett. 116:61801 2016.
    [Google Scholar]
  72. 72. 
    Abe Y Phys. Rev. Lett. 108:131801 2012.
    [Google Scholar]
  73. 73. 
    Choi JH Phys. Rev. Lett. 116:211801 2016.
    [Google Scholar]
  74. 74. 
    Mention G Phys. Rev. D 83:73006 2011.
    [Google Scholar]
  75. 75. 
    Ko YJ Phys. Rev. Lett. 118:121802 2017.
    [Google Scholar]
  76. 76. 
    Alekseev I Phys. Lett. B 787:56 2018.
    [Google Scholar]
  77. 77. 
    Allemandou N J. Instrum. 13:P07009 2018.
    [Google Scholar]
  78. 78. 
    Ashenfelter J J. Phys. G 43:113001 2016.
    [Google Scholar]
  79. 79. 
    Kalousis LN. J. Phys. Conf. Ser. 888:12181 2017.
    [Google Scholar]
  80. 80. 
    Salamanna G arXiv:1801.05580 [hep-ex] 2018.
  81. 81. 
    Vogel P, Schenter GK, Mann FM, Schenter RE. Phys. Rev. C 24:1543 1981.
    [Google Scholar]
  82. 82. 
    von Feilitzsch F, Hahn AA, Schreckenbach K. Phys. Lett. B 118:162 1982.
    [Google Scholar]
  83. 83. 
    Schreckenbach K, Colvin G, Gelletly W, Von Feilitzsch F. Phys. Lett. B 160:325 1985.
    [Google Scholar]
  84. 84. 
    Hahn AA Phys. Lett. B 218:365 1989.
    [Google Scholar]
  85. 85. 
    Huber P. Phys. Rev. C 84:24617 2011.
    [Google Scholar]
  86. 86. 
    Mueller TA Phys. Rev. C 83:54615 2011.
    [Google Scholar]
  87. 87. 
    Fallot M Phys. Rev. Lett. 109:202504 2012.
    [Google Scholar]
  88. 88. 
    Hayes AC Phys. Rev. Lett. 112:202501 2014.
    [Google Scholar]
  89. 89. 
    Sonzogni AA, Johnson TD, McCutchan EA. Phys. Rev. C 91:11301 2015.
    [Google Scholar]
  90. 90. 
    Sonzogni AA, McCutchan EA, Johnson TD, Dimitriou P. Phys. Rev. Lett. 116:132502 2016.
    [Google Scholar]
  91. 91. 
    Algora A Phys. Rev. Lett. 105:202501 2010.
    [Google Scholar]
  92. 92. 
    Rasco BC Phys. Rev. Lett. 117:92501 2016.
    [Google Scholar]
  93. 93. 
    Vivès F, Hambsch FJ, Bax H, Oberstedt S. Nucl. Phys. A 662:63 2000.
    [Google Scholar]
  94. 94. 
    Pellereau E Phys. Rev. C 95:54603 2017.
    [Google Scholar]
  95. 95. 
    Duke DL Phys. Rev. C 94:54604 2016.
    [Google Scholar]
  96. 96. 
    Demetriou P Reference database for beta-delayed neutron emission Coord. res. proj., Int. At. Energy Agency, Vienna 2018.
    [Google Scholar]
  97. 97. 
    Sobes VInvestigation of Covariance Data in General Purpose Nuclear Data Libraries: WPEC Subgroup 44 (SG44). Paris: Organ. Econ. Co-op. Dev., Nucl. Energy Agency 2018.
  98. 98. 
    Matthews EF Nucl. Instrum. Methods A 891:111 2018.
    [Google Scholar]
  99. 99. 
    An FP Phys. Rev. Lett. 118:251801 2017.
    [Google Scholar]
  100. 100. 
    Hayes AC Phys. Rev. Lett. 120:22503 2018.
    [Google Scholar]
  101. 101. 
    Sonzogni AA, Nino M, McCutchan EA. Phys. Rev. C 98:14323 2018.
    [Google Scholar]
  102. 102. 
    Sonzogni AA, McCutchan EA, Hayes AC. Phys. Rev. Lett. 119:112501 2017.
    [Google Scholar]
  103. 103. 
    Ayllon M Nucl. Instrum. Methods A 903:193 2018.
    [Google Scholar]
  104. 104. 
    Prasad MK, Snyderman NJ. Nucl. Sci. Eng. 172:300 2012.
    [Google Scholar]
  105. 105. 
    Nakae L Proceedings of the IAEA Symposium on International Safeguards: Preparing for Future Verification Challenges pap. LLNL-CONF-461175. Vienna: Int. At. Energy Agency 2010.
    [Google Scholar]
  106. 106. 
    Demidov AM et al. Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons Moscow: Atomizdat 1978.
    [Google Scholar]
  107. 107. 
    Bernstein LA et al. Nuclear data needs and capabilities for applications White pap., Lawrence Livermore Natl. Lab. Livermore, CA: 2015.
    [Google Scholar]
  108. 108. 
    Nichols AL, Nortier FM, Noy RC Nuclear data for charged-particle monitor reactions and medical isotope production Tech. rep. INDC(NDS)-0675, Int. At. Energy Agency, Vienna 2015.
    [Google Scholar]
  109. 109. 
    Nichols AL, Qaim SM, Noy RC Summary report of the Technical Meeting on Intermediate-Term Nuclear Data Needs for Medical Applications: cross sections and decay data Tech. rep. INDC(NDS)-0596, Int. At. Energy Agency, Vienna 2011.
    [Google Scholar]
  110. 110. 
    Noy RC, Nortier FM Summary report of the Consultants’ Meeting on Improvements in Charged-Particle Monitor Reactions and Nuclear Data for Medical Isotope Production Tech. rep. INDC(NDS)-0591, Int. At. Energy Agency, Vienna 2011.
    [Google Scholar]
  111. 111. 
    Qaim SM. Nucl. Med. Biol. 44:31 2017.
    [Google Scholar]
  112. 112. 
    Mettler FA Radiology 253:520 2009.
    [Google Scholar]
  113. 113. 
    Qaim SM. Radiochim. Acta 100:635 2012.
    [Google Scholar]
  114. 114. 
    Updegraff D, Hoedl SA Nuclear medicine without nuclear reactors or uranium enrichment Tech. rep., Cent. Sci., Technol., Secur. Policy, Am. Assoc. Adv. Sci., Washington, DC 2013.
    [Google Scholar]
  115. 115. 
    Ruth T. Nature 457:536 2009.
    [Google Scholar]
  116. 116. 
    NSAC Isotopes Subcomm. Meeting isotope needs and capturing opportunities for the future: the 2015 Long Range Plan for the DOE-NP Isotope Program Tech. rep., Nucl. Sci. Advis. Comm., Washington, DC 2015.
    [Google Scholar]
  117. 117. 
    Voyles AS Nucl. Instrum. Methods B 410:230 2017.
    [Google Scholar]
  118. 118. 
    Mosby MA Nucl. Instrum. Methods B 381:29 2016.
    [Google Scholar]
  119. 119. 
    Herman M et al. EMPIRE-3.2 Malta: modular system for nuclear reaction calculations and nuclear data evaluation Tech. rep. INDC(NDS)-0603, US Dep. Energy, Off. Sci. Tech. Inf., Washington, DC 2013.
    [Google Scholar]
  120. 120. 
    Blann M. Phys. Rev. C 54:1341 1996.
    [Google Scholar]
  121. 121. 
    Rochman D EPJ Web Conf. 146:2006 2017.
    [Google Scholar]
  122. 122. 
    Forrest RA. AIP Conf. Proc. 769:157 2005.
    [Google Scholar]
  123. 123. 
    Voyles AS Nucl. Instrum. Methods B 429:53 2018.
    [Google Scholar]
  124. 124. 
    Graves SA Nucl. Instrum. Methods B 386:44 2016.
    [Google Scholar]
  125. 125. 
    Kim K J. Radioanal. Nucl. Chem. 317:1021 2018.
    [Google Scholar]
  126. 126. 
    Palmiotti G, Salvatores M. EPJ Nucl. Sci. Technol. 4:40 2018.
    [Google Scholar]
  127. 127. 
    Touran NW, Yang J Proceedings of Physics of Reactors 2016 (PHYSOR2016)362 Red Hook, NY: Curran 2016.
    [Google Scholar]
  128. 128. 
    Batchelder JC et al. Phys. Rev. C In press 2018.
    [Google Scholar]
  129. 129. 
    Sorrell NC, Hawari AI. Ann. Nucl. Energy 128:398 2019.
    [Google Scholar]
  130. 130. 
    Shen D et al. Paper presented at Physics of Reactors 2018 (PHYSOR2018), Cancun, Mex., July 2–5; 2018.
    [Google Scholar]
  131. 131. 
    Romano CE et al. Proceedings of the Nuclear Data Roadmapping and Enhancement Workshop (NDREW) for Nonproliferation Tech. rep. ORNL/LTR-2018/510, Oak Ridge Natl. Lab., Oak Ridge, TN 2018.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101918-023708
Loading
/content/journals/10.1146/annurev-nucl-101918-023708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error