1932

Abstract

The accident at the Fukushima Daiichi Nuclear Power Station (FDNPS) following the Great East Japan Earthquake and the subsequent tsunami in March 2011 changed people's perceptions regarding nuclear power generation in Japan and worldwide. The failure to prevent the accident and the response to it had an enormous impact specifically on the communities close to the site but also across Japan and globally. In this review, I discuss radiation detection technologies, their use and limits in the immediate assessment and response, and improvements since then. In particular, I examine recent developments in radiation detection and imaging systems that, in combination with the enormous advances in computer vision, provide new means to detect, map, and visualize radiation using manned and unmanned deployment platforms. In addition to smarter and more adaptable technologies to prevent and minimize the impact of such events, an important outcome of this accident is the need for informed and resilient citizens who are empowered by knowledge and technologies to make rational decisions. The accident at FDNPS leaves a legacy concerning the importance of historical information, technologies, and resilience as well as challenges regarding powerful technologies that can provide substantial benefits to human society but that are also associated with risks of which we must be aware.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: The Nuclear Legacy Today of Fukushima
Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023715
2020-10-19
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/nucl/70/1/annurev-nucl-101918-023715.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023715&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Natl. Res. Counc. Lessons Learned from the Fukushima Nuclear Accident for Improving Safety of U.S. Nuclear Plants. Washington, DC: Natl. Acad. Press https://doi.org/10.17226/18294 ( 2014.)
    [Crossref] [Google Scholar]
  2. 2. 
    WHO (World Health Organ.). Health Risk Assessment from the Nuclear Accident After the 2011 Great East Japan Earthquake and Tsunami Based on a Preliminary Dose Estimation Geneva: WHO( 2013.)
    [Google Scholar]
  3. 3. 
    UNSCEAR (UN Sci. Comm. Eff. At. Radiat.). Sources, effects, and risks of ionizing radiation. Scientific annex A: levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. UNSCEAR 2013 Rep., Vol. 1, United Nations New York: http://www.unscear.org/docs/reports/2013/13-85418_Report_2013_Annex_A.pdf ( 2013.)
    [Google Scholar]
  4. 4. 
    Yasumura S et al. Public Health 127:186( 2013.)
    [Google Scholar]
  5. 5. 
    Nomura SS et al. PLOS ONE 8:e60192( 2013.)
    [Google Scholar]
  6. 6. 
    Hasegawa A. Lancet 386:479( 1992.)
    [Google Scholar]
  7. 7. 
    González AJ. J. Radiol. Prot. 32:N1( 2012.)
    [Google Scholar]
  8. 8. 
    Kai M. J. Radiol. Prot. 32:N101( 2012.)
    [Google Scholar]
  9. 9. 
    UNSCEAR (UN Sci. Comm. Eff. At. Radiat.). Sources, effects and risks of ionizing radiation. Scientific annex B: effects of radiation exposure of children. UNSCEAR 2013 Rep., Vol. 2, United Nations New York: https://www.unscear.org/docs/publications/2013/UNSCEAR_2013_Report_Vol.II.pdf ( 2013.)
    [Google Scholar]
  10. 10. 
    WHO (World Health Organ.). Heath Effects of the Chernobyl Accident and Special Health Care Programmes Geneva: WHO( 2006.)
    [Google Scholar]
  11. 11. 
    World Nucl. Assoc. Fukushima Daiichi accident Rep., World Nucl. Assoc. London: https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-daiichi-accident.aspx ( 2020.)
    [Google Scholar]
  12. 12. 
    Blumenthal DJ. Health Phys 102:482( 2012.)
    [Google Scholar]
  13. 13. 
    United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change New York: United Nations https://unfccc.int/resource/docs/convkp/kpeng.pdf ( 1998.)
    [Google Scholar]
  14. 14. 
    UNSCEAR (UN Sci. Comm. Eff. At. Radiat.). Evaluation of data on thyroid cancer in regions affected by the Chernobyl accident White Pap., United Nations New York: https://www.unscear.org/docs/publications/2017/Chernobyl_WP_2017.pdf ( 2018.)
    [Google Scholar]
  15. 15. 
    Neumaier S et al. Health Phys 111:100( 2016.)
    [Google Scholar]
  16. 16. 
    Kokaji L, Shinohara N. J. Nucl. Radiochem. Sci. 14:R1( 2014.)
    [Google Scholar]
  17. 17. 
    Imai K et al. SPEEDI: a computer code system for the real-time prediction of radiation dose to the public due to an accidental release Rep. JAERI-1297, Jpn. At. Energy Res. Inst. Tokyo: https://inis.iaea.org/collection/NCLCollectionStore/_Public/17/074/17074290.pdf?r=1&r=1 ( 1985.)
    [Google Scholar]
  18. 18. 
    Satake K et al. Annu. Rep. Act. Fault Paleoearthquake Res. 8:71( 2008.)
    [Google Scholar]
  19. 19. 
    Sugawara D et al. Pure Appl. Geophys. 170:831( 2013.)
    [Google Scholar]
  20. 20. 
    NAIIC (Nucl. Accid. Indep. Investig. Comm.). The Official Report of the Fukushima Nuclear Accident Independent Investigation Commission Tokyo: Natl. Diet Jpn 2012.)
    [Google Scholar]
  21. 21. 
    Steinhauser G et al. Sci. Total Environ. 470–471:800( 2014.)
    [Google Scholar]
  22. 22. 
    Investig. Comm. Accid. Fukushima Nucl. Power Stations Tokyo Electr. Power Co. Final report on the accident at Fukushima nuclear power stations of Tokyo Electric Power Company Rep., Gov. Jpn. Tokyo:( 2012.)
    [Google Scholar]
  23. 23. 
    TEPCO (Tokyo Electr. Power Co.). Fukushima nuclear accident analysis report Rep., TEPCO Tokyo: https://www.tepco.co.jp/en/press/corp-com/release/betu12_e/images/120620e0104.pdf ( 2012.).
    [Google Scholar]
  24. 24. 
    Am. Nucl. Soc. Spec. Comm. Fukushima. Fukushima Daiichi: ANS committee report Rep., Am. Nucl. Soc., LaGrange Park, IL http://fukushima.ans.org/report/Fukushima_report.pdf ( 2012.)
    [Google Scholar]
  25. 25. 
    Nucl. Energy Agency. The Fukushima Daiichi Nuclear Power Plant accident: OECD/NEA nuclear safety response and lessons learnt NEA Rep. 7161, Nucl. Energy Agency, Organ. Econ. Co-op. Dev. Paris: http://www.oecd-nea.org/pub/2013/7161-fukushima2013.pdf ( 2013.)
    [Google Scholar]
  26. 26. 
    Baba M. Radiat. Meas. 55:17( 2013.)
    [Google Scholar]
  27. 27. 
    Minist. Environ. Gov. Jpn. Situation concerning the accident. Booklet to Provide Basic Information Regarding Health Effects of Radiation Chapter 6 Tokyo: Minist. Environ. Gov. Jpn https://www.env.go.jp/en/chemi/rhm/basic-info/1st/06.html ( 2012.)
    [Google Scholar]
  28. 28. 
    Sugawara S et al. Post-Fukushima controversy on SPEEDI system: contested imaginary of real-time simulation technology for emergency radiation protection. The Sociotechnical Constitution of Resilience S Amir 197–224 https://doi.org/10.1007/978-981-10-8509-3_9 Singapore: Palgrave Macmillan( 2018.)
    [Crossref] [Google Scholar]
  29. 29. 
    Lyons C, Colton D. Health Phys 102:509( 2012.)
    [Google Scholar]
  30. 30. 
    Yasumura S. J. Epidemiol. 22:375( 2012.)
    [Google Scholar]
  31. 31. 
    Ohtsuru A et al. JAMA Otolaryngol. Head Neck Surg. 145:4( 2019.)
    [Google Scholar]
  32. 32. 
    TEPCO (Tokyo Electr. Power Co.). Land-side impermeable wall (frozen soil wall). https://www4.tepco.co.jp/en/decommision/planaction/landwardwall/index-e.html ( 2020.)
  33. 33. 
    IAEA (Intl. At. Energy Agency). The Fukushima Daiichi Accident, Tech. Vol. 1: Description and Context of the Accident Vienna: IAEA( 2015.)
    [Google Scholar]
  34. 34. 
    TEPCO (Tokyo Electr. Power Co.). Major initiatives for water management. https://www.tepco.co.jp/en/decommision/planaction/waterprocessing-e.html ( 2020.)
  35. 35. 
    McCurry J. Fukushima fishermen concerned for future over release of radioactive water. The Guardian Sept. 15. https://www.theguardian.com/environment/2019/sep/16/fukushima-fisherman-fear-for-future-over-release-of-radioactive-water ( 2019.)
    [Google Scholar]
  36. 36. 
    Rich M, Inoue M. Japan wants to dump nuclear plant's tainted water. Fishermen fear the worst. New York Times Dec. 23. https://www.nytimes.com/2019/12/23/world/asia/japan-fukushima-nuclear-water.html ( 2019.)
    [Google Scholar]
  37. 37. 
    Conca J. Japan's expert panel agrees that dumping radioactive water into the ocean is best. Forbes Feb. 1. https://www.forbes.com/sites/jamesconca/2020/02/01/japans-expert-panel-agrees-that-dumping-radioactive-water-into-the-ocean-is-best/#1208448e200c ( 2020.)
    [Google Scholar]
  38. 38. 
    GSI (Geospat. Inf. Auth. Jpn.). Extension site of distribution map of radiation dose, etc./GSI maps. Map Data, GSI, Tsukuba Japan: https://ramap.jmc.or.jp/map/eng ( 2011.)
    [Google Scholar]
  39. 39. 
    Baba M. J. Radiol. Prot. 41:133( 2016.)
    [Google Scholar]
  40. 40. 
    Sangiori M et al. Earth Syst. Sci. Data 11:589( 2019.)
    [Google Scholar]
  41. 41. 
    Bandstra MS et al. Measurements of Fukushima fallout by the Berkeley Radiological Air and Water Monitoring project. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record18–24 Piscataway, NJ: IEEE( 2011.)
    [Google Scholar]
  42. 42. 
    Natl. Res. Counc. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2 Washington, DC: Natl. Acad. Press https://doi.org/10.17226/11340 ( 2006.)
    [Crossref] [Google Scholar]
  43. 43. 
    UNSCEAR (UN Sci. Comm. Eff. At. Radiat.). Sources and effects of ionizing radiation, Vol. 2: Scientific annexes C, D, and E UNSCEAR 2008 Rep., United Nations New York: http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf ( 2008.)
    [Google Scholar]
  44. 44. 
    Adachi N et al. J. Radiol. Prot. 36:49( 2016.)
    [Google Scholar]
  45. 45. 
    DARPA (Def. Adv. Res. Proj. Agency). Ushering in a new generation of low-cost, networked, nuclear-radiation detectors Press Release, Aug. 23. https://www.darpa.mil/news-events/2016-08-23 ( 2016.)
    [Google Scholar]
  46. 46. 
    Gibney E. Fukushima data show rise and fall in food radioactivity. Nature News Feb. 27. https://doi.org/10.1038/nature.2015.17016 ( 2015.)
    [Crossref] [Google Scholar]
  47. 47. 
    Mizuta T et al. Shimadzu Hyoron 69:39( 2012.)
    [Google Scholar]
  48. 48. 
    Merz S et al. Environ. Sci. Technol. 49:2875( 2015.)
    [Google Scholar]
  49. 49. 
    Baba M. J. Radiol. Prot. 41:133( 2016.)
    [Google Scholar]
  50. 50. 
    Miyazaki M et al. J. Med. Sci. 60:95( 2014.)
    [Google Scholar]
  51. 51. 
    Hayano RS. Ann. IRCP 45:2 Suppl.14( 2016.)
    [Google Scholar]
  52. 52. 
    Uchiyama M et al. Health Phys 71:320( 1996.)
    [Google Scholar]
  53. 53. 
    Hayano RS et al. J. Radiol. Prot. 34:645( 2014.)
    [Google Scholar]
  54. 54. 
    Kaiser R. Philos. Trans. R. Soc. A 377:20180049( 2019.)
    [Google Scholar]
  55. 55. 
    Alvarez LW et al. Science 167:832( 1970.)
    [Google Scholar]
  56. 56. 
    Moroshima K et al. Nature 552:386( 2017.)
    [Google Scholar]
  57. 57. 
    D'Alessandro R et al. Philos. Trans. R. Soc. A 377:20180050( 2019.)
    [Google Scholar]
  58. 58. 
    Guardincerri E et al. Philos. Trans. R. Soc. A 377:20180136( 2019.)
    [Google Scholar]
  59. 59. 
    Borozdin K et al. Nature 422:277( 2003.)
    [Google Scholar]
  60. 60. 
    Fujii H et al. Prog. Theor. Exp. Phys. 2013. 073C01 ( 2013.)
    [Google Scholar]
  61. 61. 
    Miyadera H et al. AIP Adv 3:052133( 2013.)
    [Google Scholar]
  62. 62. 
    Blahd WH. Semin. Nucl. Med. 26:165( 1996.)
    [Google Scholar]
  63. 63. 
    Gottschalk A. Semin. Nucl. Med. 26:171( 1996.)
    [Google Scholar]
  64. 64. 
    Todd RW, Nightingale JM, Everett DB Nature 251:132( 1974.)
    [Google Scholar]
  65. 65. 
    Schönfelder V et al. Nucl. Instr. Methods 107:385( 1973.)
    [Google Scholar]
  66. 66. 
    Schönfelder V et al. Astrophys. J. Suppl. Ser. 86:657( 1993.)
    [Google Scholar]
  67. 67. 
    Phlips BF et al. IEEE Trans. Nucl. Sci. 43:1472( 1996.)
    [Google Scholar]
  68. 68. 
    Schmid GJ et al. Nucl. Instr. Methods A 459:565( 2001.)
    [Google Scholar]
  69. 69. 
    Takahashi T et al. Proc. SPIE 4851:1228( 2003.)
    [Google Scholar]
  70. 70. 
    Vetter K et al. Nucl. Instr. Methods A 322:525( 2004.)
    [Google Scholar]
  71. 71. 
    Boggs SE et al. New Astron. Rev. 48:251( 2004.)
    [Google Scholar]
  72. 72. 
    Xu D et al. Proc. SPIE 5540:114( 2004.)
    [Google Scholar]
  73. 73. 
    Vetter K et al. Nucl. Instr. Methods A 579:363( 2007.)
    [Google Scholar]
  74. 74. 
    Gmar M et al. Nucl. Instr. Methods A 652:638( 2011.)
    [Google Scholar]
  75. 75. 
    Takeda S et al. Phys. Proc. 37:859( 2012.)
    [Google Scholar]
  76. 76. 
    Kataoka J et al. Nucl. Instr. Methods A 732:403( 2013.)
    [Google Scholar]
  77. 77. 
    Wahl CG et al. Nucl. Instr. Methods A 784:377( 2015.)
    [Google Scholar]
  78. 78. 
    Jiang J et al. J. Nucl. Sci. Technol. 53:1067( 2016.)
    [Google Scholar]
  79. 79. 
    Sato Y et al. J. Nucl. Sci. Technol. 12:C11007( 2017.)
    [Google Scholar]
  80. 80. 
    Tomsick JA et al. arXiv:1908.04334 [astro-ph.IM] (2019)
  81. 81. 
    Matsuura D et al. Mitsubishi Heavy Ind. Tech. Rev. 51:168( 2014.)
    [Google Scholar]
  82. 82. 
    Iwanowska J et al. Nucl. Instr. Methods A 712:34( 2013.)
    [Google Scholar]
  83. 83. 
    Galloway M et al. Nucl. Instr. Methods A 652:641( 2011.)
    [Google Scholar]
  84. 84. 
    Galloway M et al. Astron. Astrophys. 614:A93( 2018.)
    [Google Scholar]
  85. 85. 
    Luke P. IEEE Trans. Nucl. Sci. 42:207( 1995.)
    [Google Scholar]
  86. 86. 
    Hellfeld D et al. IEEE Trans. Nucl. Sci. 64:2837( 2017.)
    [Google Scholar]
  87. 87. 
    Hellfeld D et al. IEEE Trans. Nucl. Sci. 66:2252( 2019.)
    [Google Scholar]
  88. 88. 
    Vetter K. Nucl. Instr. Methods A 805:127( 2016.)
    [Google Scholar]
  89. 89. 
    Vetter K et al. Nucl. Instr. Methods A 878:159( 2018.)
    [Google Scholar]
  90. 90. 
    Vetter K et al. Sensors 19:2541( 2019.)
    [Google Scholar]
  91. 91. 
    Hasegawa BH et al. Nucl. Instr. Methods A 471:140( 2001.)
    [Google Scholar]
  92. 92. 
    Cherry SR. Annu. Rev. Biomed. Eng. 8:35( 2006.)
    [Google Scholar]
  93. 93. 
    Endres F et al. IEEE Int. Conf. Robot. Autom. 2012.1691( 2012.)
    [Google Scholar]
  94. 94. 
    Cadena C et al. IEEE Trans. Robot. 32:1309( 2016.)
    [Google Scholar]
  95. 95. 
    Pavlovsky R et al. arXiv:1901.05038 [physics.app-ph] ( 2018.)
  96. 96. 
    Mihailescu L et al. Nucl. Instr. Methods A 570:89( 2007.)
    [Google Scholar]
  97. 97. 
    Mihailescu L et al. IEEE Trans. Nucl. Sci. 56:479( 2009.)
    [Google Scholar]
  98. 98. 
    Parra L, Barrett HH. IEEE Trans. Med. Imaging 17:228( 1998.)
    [Google Scholar]
  99. 99. 
    Barnowski R et al. Nucl. Instr. Methods A 800:65( 2015.)
    [Google Scholar]
  100. 100. 
    Haefner A et al. IEEE Trans. Nucl. Sci. 62:1911( 2015.)
    [Google Scholar]
  101. 101. 
    Vetter K et al. JPS Conf. Proc. 11:070001( 2016.)
    [Google Scholar]
  102. 102. 
    Haefner A et al. Nucl. Instr. Methods A 857:42( 2017.)
    [Google Scholar]
  103. 103. 
    Pavlovsky R et al. arXiv:1908.06114 ( 2019.)
  104. 104. 
    Martin PG et al. J. Environ. Radioact. 143:135( 2015.)
    [Google Scholar]
  105. 105. 
    Bandstra M et al. Nucl. Instr. Methods A 840:59( 2016.)
    [Google Scholar]
  106. 106. 
    Aucott T et al. Nucl. Instr. Methods A 789:128( 2015.)
    [Google Scholar]
  107. 107. 
    Curtis JC et al. Nucl. Instr. Methods A 954:161128( 2020.)
    [Google Scholar]
  108. 108. 
    Sanada Y et al. Prog. Nucl. Sci. Technol. 4:76( 2014.)
    [Google Scholar]
  109. 109. 
    Joshi HY et al. IEEE Trans. Nucl. Sci. 64:1754( 2017.)
    [Google Scholar]
  110. 110. 
    Sato Y et al. J. Nucl. Sci. Technol. 56:801( 2019.)
    [Google Scholar]
  111. 111. 
    Sanada Y, Torii T. J. Environ. Radioact. 139:294( 2015.)
    [Google Scholar]
  112. 112. 
    Sanada Y et al. Appl. Radiat. Isot. 118:308( 2016.)
    [Google Scholar]
  113. 113. 
    Sanada Y et al. J. Environ. Radioact. 192:417( 2018.)
    [Google Scholar]
  114. 114. 
    Glodo J et al. Phys. Proc. 90:285( 2017.)
    [Google Scholar]
  115. 115. 
    Sato Y et al. J. Nucl. Sci. Technol. 55:90( 2018.)
    [Google Scholar]
  116. 116. 
    Bandstra MS et al. Nucl. Instr. Methods A 954:161126( 2020.)
    [Google Scholar]
  117. 117. 
    Bilton KJ et al. IEEE Trans. Nucl. Sci. 66:827( 2019.)
    [Google Scholar]
  118. 118. 
    Kuhn A. A year on, Japan is still looking for the road ahead. NPR Radio Broadcast Mar. 9. https://www.npr.org/2012/03/09/148231452/a-year-on-japan-is-still-looking-for-the-road-ahead ( 2012.)
    [Google Scholar]
  119. 119. 
    González AJ et al. J. Radiol. Prot. 33:497( 2013.)
    [Google Scholar]
  120. 120. 
    Bromet EJ. Health Phys 106:206( 2014.)
    [Google Scholar]
  121. 121. 
    Tanigawa K et al. Lancet 379:889( 2012.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101918-023715
Loading
/content/journals/10.1146/annurev-nucl-101918-023715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error