1932

Abstract

The ultrarelativistic heavy-ion programs at the Relativistic Heavy Ion Collider and the Large Hadron Collider have entered an era of quantitative analysis of quantum chromodynamics (QCD) at high temperatures. The remarkable discovery of the strongly coupled quark–gluon plasma (sQGP), as deduced from its hydrodynamic behavior at long wavelengths, calls for probes that can reveal its inner workings. Charm- and bottom-hadron spectra offer unique insights into the transport properties and the microscopic structure of the QCD medium created in these collisions. At low momentum the Brownian motion of heavy quarks in the sQGP gives access to their diffusion constant, at intermediate momentum these quarks give insight into hadronization mechanisms, and at high momentum they are expected to merge into a radiative-energy loss regime. We review recent experimental and theoretical achievements on measuring a variety of heavy-flavor observables, characterizing the different regimes in momentum and extracting pertinent transport coefficients to unravel the structure of the sQGP and its hadronization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023806
2019-10-19
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/nucl/69/1/annurev-nucl-101918-023806.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023806&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Borsanyi S et al. J. High Energy Phys. 09:073 2010.
    [Google Scholar]
  2. 2. 
    Bhattacharya T Phys. Rev. Lett. 113:082001 2014.
    [Google Scholar]
  3. 3. 
    Bazavov A Phys. Rev. D 90:094503 2014.
    [Google Scholar]
  4. 4. 
    Ding HT, Karsch F, Mukherjee S Int. J. Mod. Phys. E 24:1530007 2015.
    [Google Scholar]
  5. 5. 
    Shuryak E Rev. Mod. Phys. 89:035001 2017.
    [Google Scholar]
  6. 6. 
    Braun-Munzinger P, Koch V, Schfer T, Stachel J Phys. Rep. 621:76 2016.
    [Google Scholar]
  7. 7. 
    Busza W, Rajagopal K, van der Schee W Annu. Rev. Nucl. Part. Sci. 68:339 2018.
    [Google Scholar]
  8. 8. 
    Heinz U, Snellings R Annu. Rev. Nucl. Part. Sci. 63:123 2013.
    [Google Scholar]
  9. 9. 
    Gale C Phys. Rev. Lett. 110:012302 2013.
    [Google Scholar]
  10. 10. 
    Policastro G, Son DT, Starinets AO Phys. Rev. Lett. 87:081601 2001.
    [Google Scholar]
  11. 11. 
    Paatelainen R, Eskola KJ, Niemi H, Tuominen K Phys. Lett. B 731:126 2014.
    [Google Scholar]
  12. 12. 
    Adare A Phys. Rev. Lett. 104:132301 2010.
    [Google Scholar]
  13. 13. 
    Specht HJ AIP Conf. Proc. 1322:1 2010.
    [Google Scholar]
  14. 14. 
    Adam J Phys. Lett. B 754:235 2016.
    [Google Scholar]
  15. 15. 
    Butterworth J Nucl. Part. Phys. Proc. 289–290:189 2017.
    [Google Scholar]
  16. 16. 
    Rapp R, van Hees H Phys. Lett. B 753:586 2016.
    [Google Scholar]
  17. 17. 
    Majumder A, Van Leeuwen M Prog. Part. Nucl. Phys. 66:41 2011.
    [Google Scholar]
  18. 18. 
    Burke KM Phys. Rev. C 90:014909 2014.
    [Google Scholar]
  19. 19. 
    Lin ZW Phys. Rev. C 72:064901 2005.
    [Google Scholar]
  20. 20. 
    Xu Z, Greiner C Phys. Rev. C 71:064901 2005.
    [Google Scholar]
  21. 21. 
    Cassing W, Bratkovskaya EL Phys. Rev. C 78:034919 2008.
    [Google Scholar]
  22. 22. 
    Cacciari M, Nason P, Vogt R Phys. Rev. Lett. 95:122001 2005.
    [Google Scholar]
  23. 23. 
    Svetitsky B Phys. Rev. D 37:2484 1988.
    [Google Scholar]
  24. 24. 
    Rapp R, van Hees H arXiv:0903.1096 [hep-ph] 2010.
  25. 25. 
    van Hees H, Rapp R Phys. Rev. C 71:034907 2005.
    [Google Scholar]
  26. 26. 
    van Hees H, Greco V, Rapp R Phys. Rev. C 73:034913 2006.
    [Google Scholar]
  27. 27. 
    Gossiaux PB, Aichelin J Phys. Rev. C 78:014904 2008.
    [Google Scholar]
  28. 28. 
    Gossiaux PB, Bierkandt R, Aichelin J Phys. Rev. C 79:044906 2009.
    [Google Scholar]
  29. 29. 
    He M, Fries RJ, Rapp R Phys. Rev. C 86:014903 2012.
    [Google Scholar]
  30. 30. 
    Cao S, Bass SA Phys. Rev. C 84:064902 2011.
    [Google Scholar]
  31. 31. 
    Alberico WM Eur. Phys. J. C 73:2481 2013.
    [Google Scholar]
  32. 32. 
    Berrehrah H Phys. Rev. C 90:064906 2014.
    [Google Scholar]
  33. 33. 
    Song T Phys. Rev. C 92:014910 2015.
    [Google Scholar]
  34. 34. 
    Nahrgang M, Aichelin J, Gossiaux PB, Werner K Phys. Rev. C 93:044909 2016.
    [Google Scholar]
  35. 35. 
    Scardina F Phys. Rev. C 96:044905 2017.
    [Google Scholar]
  36. 36. 
    Plumari S Eur. Phys. J. C 78:348 2018.
    [Google Scholar]
  37. 37. 
    Moore GD, Teaney D Phys. Rev. C 71:064904 2005.
    [Google Scholar]
  38. 38. 
    Adler SS Phys. Rev. Lett. 96:032301 2006.
    [Google Scholar]
  39. 39. 
    Adare A Phys. Rev. Lett. 98:172301 2007.
    [Google Scholar]
  40. 40. 
    Abelev BI Phys. Rev. Lett. 98:192301 (2007). Erratum. Phys. Rev. Lett. 106:159902 2011.
    [Google Scholar]
  41. 41. 
    Acharya S Phys. Rev. Lett. 120:102301 2018.
    [Google Scholar]
  42. 42. 
    Adamczyk L Phys. Rev. Lett. 118:212301 2017.
    [Google Scholar]
  43. 43. 
    Sirunyan AM Phys. Rev. Lett. 120:202301 2018.
    [Google Scholar]
  44. 44. 
    Mustafa MG, Pal D, Srivastava DK, Thoma M Phys. Lett. B 428:234 1998.
    [Google Scholar]
  45. 45. 
    Dokshitzer YL, Kharzeev DE Phys. Lett. B 519:199 2001.
    [Google Scholar]
  46. 46. 
    Armesto N, Salgado CA, Wiedemann UA Phys. Rev. D 69:114003 2004.
    [Google Scholar]
  47. 47. 
    Buzzatti A, Gyulassy M Phys. Rev. Lett. 108:022301 2012.
    [Google Scholar]
  48. 48. 
    Andronic A Eur. Phys. J. C 76:107 2016.
    [Google Scholar]
  49. 49. 
    Djordjevic M Phys. Rev. Lett. 112:042302 2014.
    [Google Scholar]
  50. 50. 
    Wang XN Quark-Gluon Plasma 5 Hackensack, NJ: World Sci. 2016.
    [Google Scholar]
  51. 51. 
    Poskanzer AM, Voloshin SA Phys. Rev. C 58:1671 1998.
    [Google Scholar]
  52. 52. 
    Kang ZB, Ringer F, Vitev I J. Phys. Conf. Ser. 779:012029 2017.
    [Google Scholar]
  53. 53. 
    Kang ZB, Ringer F, Vitev I J. High Energy Phys. 1703:146 2017.
    [Google Scholar]
  54. 54. 
    Adamczyk L Phys. Rev. D 86:072013 2012.
    [Google Scholar]
  55. 55. 
    Acosta D Phys. Rev. Lett. 91:241804 2003.
    [Google Scholar]
  56. 56. 
    Acharya S Eur. Phys. J. C 77:550 2017.
    [Google Scholar]
  57. 57. 
    Sirunyan AM Phys. Lett. B 782:474 2018.
    [Google Scholar]
  58. 58. 
    Aaij R J. High Energy Phys. 03:159 (2016). Erratum. J. High Energy Phys. 05:074 2017.
    [Google Scholar]
  59. 59. 
    Aad G J. High Energy Phys. 10:042 2013.
    [Google Scholar]
  60. 60. 
    Khachatryan V Phys. Lett. B 771:435 2017.
    [Google Scholar]
  61. 61. 
    Adam J et al. arXiv:1812.10224 [nucl-ex] 2018.
  62. 62. 
    Acharya S J. High Energy Phys. 10:174 2018.
    [Google Scholar]
  63. 63. 
    Djordjevic M, Djordjevic M Phys. Rev. C 92:024918 2015.
    [Google Scholar]
  64. 64. 
    Xu J, Liao J, Gyulassy M J. High Energy Phys. 02:169 2016.
    [Google Scholar]
  65. 65. 
    Xu J, Buzzatti A, Gyulassy M J. High Energy Phys. 08:063 2014.
    [Google Scholar]
  66. 66. 
    Kang ZB Phys. Rev. Lett. 114:092002 2015.
    [Google Scholar]
  67. 67. 
    Cao S, Luo T, Qin GY, Wang XN Phys. Lett. B 777:255 2018.
    [Google Scholar]
  68. 68. 
    Song T Phys. Rev. C 93:034906 2016.
    [Google Scholar]
  69. 69. 
    Horowitz WA Phys. Rev. D 91:085019 2015.
    [Google Scholar]
  70. 70. 
    Uphoff J, Fochler O, Xu Z, Greiner C J. Phys. G 42:115106 2015.
    [Google Scholar]
  71. 71. 
    Nahrgang M, Aichelin J, Gossiaux PB, Werner K Phys. Rev. C 89:014905 2014.
    [Google Scholar]
  72. 72. 
    Beraudo A Eur. Phys. J. C 75:121 2015.
    [Google Scholar]
  73. 73. 
    Nahrgang M Phys. Rev. C 91:014904 2015.
    [Google Scholar]
  74. 74. 
    Chien YT Phys. Rev. D 93:074030 2016.
    [Google Scholar]
  75. 75. 
    Cao S, Luo T, Qin GY, Wang XN Phys. Rev. C 94:014909 2016.
    [Google Scholar]
  76. 76. 
    Citron Z et al. arXiv:1812.06772 [hep-ph] 2018.
  77. 77. 
    Adare A et al. arXiv:1501.06197 [nucl-ex] 2015.
  78. 78. 
    He M, Fries RJ, Rapp R Phys. Lett. B 735:445 2014.
    [Google Scholar]
  79. 79. 
    Eskola KJ, Paukkunen H, Salgado CA J. High Energy Phys. 04:065 2009.
    [Google Scholar]
  80. 80. 
    Beraudo A Nucl. Phys. A 979:21 2018.
    [Google Scholar]
  81. 81. 
    Banerjee D, Datta S, Gavai R, Majumdar P Phys. Rev. D 85:014510 2012.
    [Google Scholar]
  82. 82. 
    Ding HT Phys. Rev. D 86:014509 2012.
    [Google Scholar]
  83. 83. 
    Kaczmarek O Nucl. Phys. A 931:633 2014.
    [Google Scholar]
  84. 84. 
    Das SK, Scardina F, Plumari S, Greco V Phys. Lett. B 747:260 2015.
    [Google Scholar]
  85. 85. 
    Riek F, Rapp R Phys. Rev. C 82:035201 2010.
    [Google Scholar]
  86. 86. 
    Xu Y Phys. Rev. C 97:014907 2018.
    [Google Scholar]
  87. 87. 
    He M, Fries RJ, Rapp R Phys. Lett. B 701:445 2011.
    [Google Scholar]
  88. 88. 
    Tolos L, Torres-Rincon JM Phys. Rev. D 88:074019 2013.
    [Google Scholar]
  89. 89. 
    Ozvenchuk V Phys. Rev. C 90:054909
    [Google Scholar]
  90. 90. 
    Gossiaux P Nucl. Phys. A 982:113 2019.
    [Google Scholar]
  91. 91. 
    Prino F, Rapp R J. Phys. G 43:093002 2016.
    [Google Scholar]
  92. 92. 
    Caron-Huot S, Moore GD Phys. Rev. Lett. 100:052301 2008.
    [Google Scholar]
  93. 93. 
    Liu SYF, He M, Rapp R Phys. Rev. C 99:055201 2019.
    [Google Scholar]
  94. 94. 
    Rapp R J. Phys. G 36:064014 2009.
    [Google Scholar]
  95. 95. 
    Das KP, Hwa RC Phys. Lett. B 68:459 1977. Phys. Lett.B 73:504 1978.
    [Google Scholar]
  96. 96. 
    Sjostrand T, Khoze VA Z. Phys. C 62:281 1994.
    [Google Scholar]
  97. 97. 
    Becattini F J. Phys. G 23:1933 1997.
    [Google Scholar]
  98. 98. 
    Andronic A Phys. Lett. B 675:312 2009.
    [Google Scholar]
  99. 99. 
    Kraus I, Cleymans J, Oeschler H, Redlich K Phys. Rev. C 79:014901 2009.
    [Google Scholar]
  100. 100. 
    Lin Zw, Molnar D Phys. Rev. C 68:044901 2003.
    [Google Scholar]
  101. 101. 
    Fries RJ, Greco V, Sorensen P Annu. Rev. Nucl. Part. Sci. 58:177 2008.
    [Google Scholar]
  102. 102. 
    Kuznetsova I, Rafelski J Eur. Phys. J. C 51:113 2007.
    [Google Scholar]
  103. 103. 
    He M, Fries RJ, Rapp R Phys. Rev. Lett. 110:112301 2013.
    [Google Scholar]
  104. 104. 
    Sorensen PR, Dong X Phys. Rev. C 74:024902 2006.
    [Google Scholar]
  105. 105. 
    Martinez-Garcia G, Gadrat S, Crochet P Phys. Lett. B 663:55 2008. Phys. Lett.B 666:533 2008.
    [Google Scholar]
  106. 106. 
    Oh Y, Ko CM, Lee SH, Yasui S Phys. Rev. C 79:044905 2009.
    [Google Scholar]
  107. 107. 
    Andronic A, Braun-Munzinger P, Redlich K, Stachel J Phys. Lett. B 571:36 2003.
    [Google Scholar]
  108. 108. 
    Lisovyi M, Verbytskyi A, Zenaiev O EPJ Web Conf. 120:03002 2016.
    [Google Scholar]
  109. 109. 
    Zhou L Nucl. Phys. A 967:620 2017.
    [Google Scholar]
  110. 110. 
    Sirunyan AM et al. arXiv:1810.03022 [hep-ex] 2018.
  111. 111. 
    He M, Rapp R arXiv:1902.08889 [nucl-th] 2019.
  112. 112. 
    Radhakrishnan S Nucl. Phys. A 982:659 2019.
    [Google Scholar]
  113. 113. 
    Acharya S et al. arXiv:1809.10922 [nucl-ex] 2018.
  114. 114. 
    Acharya S J. High Energy Phys. 04:108 2018.
    [Google Scholar]
  115. 115. 
    Aaij R et al. arXiv:1809.01404 [hep-ex] 2018.
  116. 116. 
    Bierlich C, Christiansen JR Phys. Rev. D 92:094010 2015.
    [Google Scholar]
  117. 117. 
    Li HH, Shao FL, Song J, Wang RQ Phys. Rev. C 97:064915 2018.
    [Google Scholar]
  118. 118. 
    Zhao J, Shi S, Xu N, Zhuang P arXiv:1805.10858 [hep-ph] 2018.
  119. 119. 
    Rapp R Du X. Nucl. Phys. A 967:216 2017.
    [Google Scholar]
  120. 120. 
    Bjorken JD Rep. FERMILAB-PUB-82-059-T, Fermilab, Batavia, IL 1982.
  121. 121. 
    Adams J Nucl. Phys. A 757:102 2005.
    [Google Scholar]
  122. 122. 
    Adcox K Nucl. Phys. A 757:184 2005.
    [Google Scholar]
  123. 123. 
    Back BB Nucl. Phys. A 757:28 2005.
    [Google Scholar]
  124. 124. 
    Arsene I Nucl. Phys. A 757:1 2005.
    [Google Scholar]
  125. 125. 
    Chatrchyan S Phys. Rev. C 84:024906 2011.
    [Google Scholar]
  126. 126. 
    Aad G Phys. Rev. Lett. 105:252303 2010.
    [Google Scholar]
  127. 127. 
    Aamodt K Phys. Lett. B 696:30 2011.
    [Google Scholar]
  128. 128. 
    Braaten E, Thoma MH Phys. Rev. D 44:R2625 1991.
    [Google Scholar]
  129. 129. 
    Djordjevic M, Gyulassy M Nucl. Phys. A 733:265 2004.
    [Google Scholar]
  130. 130. 
    Cao S et al. arXiv:1809.07894 [nucl-th] 2018.
  131. 131. 
    Khachatryan V J. High Energy Phys. 04:039 2017.
    [Google Scholar]
  132. 132. 
    Sirunyan AM et al. arXiv:1810.11102 [hep-ex] 2018.
  133. 133. 
    Sirunyan AM Eur. Phys. J. C 78:509 2018.
    [Google Scholar]
  134. 134. 
    Sirunyan AM Phys. Rev. Lett. 119:152301 2017.
    [Google Scholar]
  135. 135. 
    Oh K Nucl. Phys. A 967:632 2017.
    [Google Scholar]
  136. 136. 
    Adare A Phys. Rev. C 93:034904 2016.
    [Google Scholar]
  137. 137. 
    Djordjevic M, Zigic D, Djordjevic M, Auvinen J arXiv:1805.04030 [nucl-th] 2018.
  138. 138. 
    Chatrchyan S Phys. Rev. Lett. 113:132301 (2014). Erratum. Phys. Rev. Lett. 115:029903 2015.
    [Google Scholar]
  139. 139. 
    Trzeciak BA Nucl. Phys. A 982:579 2019.
    [Google Scholar]
  140. 140. 
    Gossiaux PB, Guiho V, Aichelin J J. Phys. G 32:S359 2006.
    [Google Scholar]
  141. 141. 
    Zhu X, Xu N, Zhuang P Phys. Rev. Lett. 100:152301 2008.
    [Google Scholar]
  142. 142. 
    Akamatsu Y, Hatsuda T, Hirano T Phys. Rev. C 80:031901 2009.
    [Google Scholar]
  143. 143. 
    Younus M, Srivastava DK J. Phys. G 40:065004 2013.
    [Google Scholar]
  144. 144. 
    Cao S, Qin GY, Bass SA Phys. Rev. C 92:054909 2015.
    [Google Scholar]
  145. 145. 
    D'Eramo F, Rajagopal K, Yin Y J. High Energy Phys. 01:172 2019.
    [Google Scholar]
  146. 146. 
    Ma L Nucl. Part. Phys. Proc. 289/290:329 2017.
    [Google Scholar]
  147. 147. 
    Adam J Eur. Phys. J. C 77:245 2017.
    [Google Scholar]
  148. 148. 
    CMS Collab. Rep. CMS-PAS-HIN-18-007, CERN, Geneva 2018.
  149. 149. 
    Huggins K, Rapp R Nucl. Phys. A 896:24 2012.
    [Google Scholar]
  150. 150. 
    Policastro G, Son DT, Starinets AO J. High Energy Phys. 09:043 2002.
    [Google Scholar]
  151. 151. 
    Liu SYF, Rapp R arXiv:1612.09138 [nucl-th] 2016.
  152. 152. 
    Cheng M Phys. Rev. D 75:034506 2007.
    [Google Scholar]
  153. 153. 
    Liu SYF, Rapp R Phys. Rev. C 97:034918 2018.
    [Google Scholar]
  154. 154. 
    Qin GY Phys. Rev. Lett. 100:072301 2008.
    [Google Scholar]
  155. 155. 
    Ravagli L, Rapp R Phys. Lett. B 655:126 2007.
    [Google Scholar]
  156. 156. 
    Adare A Phys. Rev. Lett. 109:242301 2012.
    [Google Scholar]
  157. 157. 
    Abelev BB Phys. Rev. Lett. 113:232301 2014.
    [Google Scholar]
  158. 158. 
    Khachatryan V Phys. Rev. Lett. 116:032301 2016.
    [Google Scholar]
  159. 159. 
    Adam J Phys. Rev. C 94:054908 2016.
    [Google Scholar]
  160. 160. 
    Adare A Phys. Rev. Lett. 112:252301 2014.
    [Google Scholar]
  161. 161. 
    Aaij R J. High Energy Phys. 10:090 2017.
    [Google Scholar]
  162. 162. 
    Khachatryan V Phys. Lett. B 754:59 2016.
    [Google Scholar]
  163. 163. 
    Sirunyan AM Phys. Lett. B 772:306 2017.
    [Google Scholar]
  164. 164. 
    Eskola KJ, Paakkinen P, Paukkunen H, Salgado CA Eur. Phys. J. C 77:163 2017.
    [Google Scholar]
  165. 165. 
    Guzey V, Kryshen E, Strikman M, Zhalov M Phys. Lett. B 726:290 2013.
    [Google Scholar]
  166. 166. 
    Khachatryan V Phys. Lett. B 750:565 2015.
    [Google Scholar]
  167. 167. 
    Adam J J. High Energy Phys. 02:077 2017.
    [Google Scholar]
  168. 168. 
    Khachatryan V Phys. Lett. B 759:36 2016.
    [Google Scholar]
  169. 169. 
    Aad G Phys. Rev. C 92:044915 2015.
    [Google Scholar]
  170. 170. 
    Chatrchyan S Eur. Phys. J. C 74:2951 2014.
    [Google Scholar]
  171. 171. 
    Sirunyan AM Phys. Rev. Lett. 121:062002 2018.
    [Google Scholar]
  172. 172. 
    Abelev B Phys. Lett. B 718:1273 2013.
    [Google Scholar]
  173. 173. 
    Khachatryan V Phys. Lett. B 772:489 2017.
    [Google Scholar]
  174. 174. 
    Khachatryan V J. High Energy Phys. 09:091 2010.
    [Google Scholar]
  175. 175. 
    Abelev B Phys. Lett. B 719:29 2013.
    [Google Scholar]
  176. 176. 
    Chatrchyan S Phys. Lett. B 718:795 2013.
    [Google Scholar]
  177. 177. 
    Aad G Phys. Rev. Lett. 110:182302 2013.
    [Google Scholar]
  178. 178. 
    Aaij R Phys. Lett. B 762:473 2016.
    [Google Scholar]
  179. 179. 
    Adare A Phys. Rev. Lett. 111:212301 2013.
    [Google Scholar]
  180. 180. 
    Adamczyk L Phys. Lett. B 747:265 2015.
    [Google Scholar]
  181. 181. 
    He L Phys. Lett. B 753:506 2016.
    [Google Scholar]
  182. 182. 
    Dusling K, Venugopalan R Phys. Rev. D 87:094034 2013.
    [Google Scholar]
  183. 183. 
    Back BB Phys. Rev. Lett. 91:072302 2003.
    [Google Scholar]
  184. 184. 
    Adam J Phys. Rev. C 91:064905 2015.
    [Google Scholar]
  185. 185. 
    ALICE Collab. Public note ALICE-PUBLIC-2017-008, CERN, Geneva 2017.
  186. 186. 
    Acharya S Phys. Lett. B 780:7 2018.
    [Google Scholar]
  187. 187. 
    Sirunyan AM et al. arXiv:1810.01473 [hep-ex] 2018.
  188. 188. 
    Sirunyan AM Phys. Rev. Lett. 121:082301 2018.
    [Google Scholar]
  189. 189. 
    Acharya S et al. arXiv:1805.04367 [nucl-ex] 2018.
  190. 190. 
    CMS Collab. Phys. anal. summ. CMS-FTR-17-002, CERN, Geneva 2017.
  191. 191. 
    sPHENIX Collab. MVTX proposal. https://indico.bnl.gov/event/4072 2018.
/content/journals/10.1146/annurev-nucl-101918-023806
Loading
/content/journals/10.1146/annurev-nucl-101918-023806
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error