1932

Abstract

This review describes the current status of precision quantum chromodynamics (QCD) studies at the LHC. We introduce the main experimental and theoretical methods, and we discuss their cross-stimulated developments and recent advances. The different types of QCD observables that are measured at the LHC, including cross sections and event- and jet-level properties, for various final states, are summarized. Their relation to fundamental QCD dynamics and their impact on Standard Model parameter determinations are discussed using specific examples. The impact of QCD-related observables on direct and indirect searches for rare processes within and New Physics beyond the Standard Model is outlined.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101920-014923
2022-09-26
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-101920-014923.html?itemId=/content/journals/10.1146/annurev-nucl-101920-014923&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gross DJ, Wilczek F. Phys. Rev. Lett. 30:1343 1973.)
  2. 2.
    Politzer HD. Phys. Rev. Lett. 30:1346 1973.)
  3. 3.
    Ellis RK, Stirling WJ, Webber BR. QCD and Collider Physics Cambridge, UK: Cambridge Univ. Press 1996.)
  4. 4.
    Dissertori G, Knowles IG, Schmelling M. Quantum Chromodynamics: High Energy Experiments and Theory Oxford, UK: Oxford Univ. Press 2003.)
  5. 5.
    Campbell J, Huston J, Krauss F. The Black Book of Quantum Chromodynamics Oxford, UK: Oxford Univ. Press 2018.)
  6. 6.
    Ellis RK, Kunszt Z, Melnikov K, Zanderighi G. Phys. Rep. 518:141 2012.)
  7. 7.
    Gleisberg T et al. J. High Energy Phys. 0902:007 2009.)
  8. 8.
    Bellm J et al. Eur. Phys. J. C 76:196 2016.)
  9. 9.
    Alioli S, Nason P, Oleari C, Re E. J. High Energy Phys. 1006:43 2010.)
  10. 10.
    Alwall J et al. J. High Energy Phys. 1407:79 2014.)
  11. 11.
    Berger CF et al. Phys. Rev. D 78:036003 2008.); Cullen G et al. Eur. Phys. J. C 74:3001 2014.); Bevilacqua G et al. Comput. Phys. Commun. 184:986 2013.); Cascioli F, Maierhöfer P, Pozzorini S Phys. Rev. Lett. 108:1116012012); Badger S, Biedermann B, Uwer P, Yundin V Comput. Phys. Commun. 184:1981 2013.)
  12. 12.
    Alioli S et al. Comput. Phys. Commun. 185:560 2014.)
  13. 13.
    Campbell JM, Ellis RK, Williams C. J. High Energy Phys. 1107:18 2011.)
  14. 14.
    Arnold K et al. Comput. Phys. Commun. 180:1661 2009.)
  15. 15.
    Laporta S. Int. J. Mod. Phys. A 15:5087 2000.)
  16. 16.
    Gehrmann T, Remiddi E. Nucl. Phys. B 580:485 2000.)
  17. 17.
    Henn JM. Phys. Rev. Lett. 110:251601 2013.)
  18. 18.
    Binoth T, Heinrich G. Nucl. Phys. B 693:134 2004.); Anastasiou C, Melnikov K, Petriello F. Phys. Rev. D 69:076010 2004.)
  19. 19.
    Catani S, Grazzini M. Phys. Rev. Lett. 98:222002 2007.)
  20. 20.
    Gehrmann-De Ridder A, Gehrmann T, Glover EWN. J. High Energy Phys. 0509:056 2005.); Currie J, Glover EWN, Wells S J. High Energy Phys. 1304: 66: 2013.)
  21. 21.
    Czakon M. Phys. Lett. B 693:259 2010.); Boughezal R, Melnikov K, Petriello F. Phys. Rev. D 85:034025 2012.)
  22. 22.
    Boughezal R, Focke C, Liu X, Petriello F. Phys. Rev. Lett. 115:062002 2015.); Boughezal R, Liu X, Petriello F. Phys. Rev. D 91:094035 2015.); Gaunt J, Stahlhofen M, Tackmann FJ, Walsh JR. J. High Energy Phys. 1509:58 2015.)
  23. 23.
    Somogyi G, Trocsanyi Z. J.High Energy Phys. 0808:042 2008.); Del Duca V et al. Phys. Rev. D 94:074019 2016.)
  24. 24.
    Heinrich G. Phys. Rep. 922:1 2021.)
  25. 25.
    Anastasiou C, Melnikov K, Petriello F. Nucl. Phys. B 724:197 2005.)
  26. 26.
    Melnikov K, Petriello F. Phys. Rev. D 74:114017 2006.); Catani S et al. Phys. Rev. Lett. 103:082001 2009.)
  27. 27.
    Gehrmann-De Ridder A et al. Phys. Rev. Lett. 123:102001 2019.)
  28. 28.
    Czakon M, van Hameren A, Mitov A, Poncelet R. J. High Energy Phys. 1910:262 2019.)
  29. 29.
    Boughezal R, Focke C, Liu X, Petriello F. Phys. Rev. Lett. 115:062002 2015.)
  30. 30.
    Gehrmann-De Ridder A et al. Phys. Rev. Lett. 117:022001 2016.)
  31. 31.
    Campbell JM, Ellis RK, Williams C Phys. Rev. Lett. 118:222001 2017. Erratum Phys. Rev. Lett. 124:259901 2020.); Chen X et al. J. High Energy Phys. 2004.166 2020.)
  32. 32.
    Czakon M, Heymes D, Mitov A. Phys. Rev. Lett. 116:082003 2016.)
  33. 33.
    Catani S et al. J. High Energy Phys. 1907:100 2019.)
  34. 34.
    Czakon M, Mitov A, Poncelet R. Phys. Rev. Lett. 127:152001 2021.)
  35. 35.
    Grazzini M, Kallweit S, Wiesemann M. Eur. Phys. J. C 78:537 2018.)
  36. 36.
    Boughezal R et al. Eur. Phys. J. C 77:7 2017.)
  37. 37.
    Anastasiou C et al. Phys. Rev. Lett. 114:212001 2015.); Dulat F, Mistlberger B, Pelloni A Phys. Rev. D 99:034004 2019.)
  38. 38.
    Duhr C, Dulat F, Mistlberger B. Phys. Rev. Lett. 125:172001 2020.); Chen X et al. Phys. Rev. Lett. 128:052001 2022.)
  39. 39.
    Chen X et al. Phys. Rev. Lett. 127:072002 2021.); Billis G et al. Phys. Rev. Lett. 127:072001 2021.)
  40. 40.
    Sjöstrand T et al. Comput. Phys. Commun. 191:159 2015.)
  41. 41.
    Collins JC, Soper DE, Sterman GF. Nucl. Phys. B 250:199 1985.)
  42. 42.
    Catani S, Trentadue L. Nucl. Phys. B 327:323 1989.)
  43. 43.
    Bizon W et al. Eur. Phys. J. C 79:868 2019.); Becher T, Neumann T. J. High Energy Phys. 2103:199 2021.); Camarda S, Cieri L, Ferrera G. Phys. Rev. D 104:L111503 2021.); Ju WL, Schönherr M J. High Energy Phys. 2110:88 2021.)
  44. 44.
    Bizon W et al. J. High Energy Phys. 1802:108 2018.); Chen X et al. Phys. Lett. B 788:425 2019.)
  45. 45.
    Aaboud M et al. (ATLAS Collab.). Eur. Phys. J. C 80:1104 2020.); Aaboud M et al. (ATLAS Collab.). Eur. Phys. J. C 79:135 2019.); Khachatryan V et al. (CMS Collab.). J. Instrum. 12:P02014 2017.)
    [Google Scholar]
  46. 46.
    Aad G et al. (ATLAS Collab.). Eur. Phys. J. C 79:836 2019.); Aaboud M et al. (ATLAS Collab.). Eur. Phys. J. C 79:375 2019.); Sirunyan AM et al. (CMS Collab.). J. Instrum. 15:P06005 2020.); LHCb Collab. J. Instrum. 10:P06013 2015.)
    [Google Scholar]
  47. 47.
    Aaboud M et al. (ATLAS Collab.). J. High Energy Phys. 1805:195 2018.)
    [Google Scholar]
  48. 48.
    Aaboud M et al. (ATLAS Collab.). J. High Energy Phys. 1709:20 2017.)
    [Google Scholar]
  49. 49.
    Khachatryan V et al. (CMS Collab.). Eur. Phys. J. C 76:451 2016.)
    [Google Scholar]
  50. 50.
    Acharya S et al. (ALICE Collab.). Phys. Rev. C 101:034911 2020.)
    [Google Scholar]
  51. 51.
    Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 2012:82 2020.)
    [Google Scholar]
  52. 52.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 77:746 2017.)
    [Google Scholar]
  53. 53.
    Aad G et al. (ATLAS Collab.). J. High Energy Phys. 1405:59 2014.)
    [Google Scholar]
  54. 54.
    Nagy Z. Phys. Rev. D 68:094002 2003.)
  55. 55.
    Acharya S et al. (ALICE Collab.). Phys. Rev. D 100:092004 2019.)
    [Google Scholar]
  56. 56.
    Aaij R et al. (LHCb Collab.). J. High Energy Phys. 2201:166 2022.)
    [Google Scholar]
  57. 57.
    Aad G et al. (ATLAS Collab.). Eur. Phys. J. C 75:228 2015.)
    [Google Scholar]
  58. 58.
    Khachatryan V et al. (CMS Collab.). Eur. Phys. J. C 75:186 2015.)
    [Google Scholar]
  59. 59.
    Chatrchyan S et al. (CMS Collab.). Eur. Phys. J. C 73:2604 2013.)
    [Google Scholar]
  60. 60.
    Khachatryan V et al. (CMS Collab.). Eur. Phys. J. C 76:536 2016.)
    [Google Scholar]
  61. 61.
    Aaboud M et al. (ATLAS Collab.). Phys. Rev. D 98:092004 2018.)
    [Google Scholar]
  62. 62.
    Aaboud M et al. (ATLAS Collab.). Eur. Phys. J. C 77:872 2017.)
    [Google Scholar]
  63. 63.
    Malaescu B. (ATLAS Collab.). High-Precision αs Measurements from LHC to FCC-ee: Workshop Proceedings D d'Enterria, et al. 120–24 Geneva: CERN 2015.)
    [Google Scholar]
  64. 64.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 79:773 2019.)
    [Google Scholar]
  65. 65.
    Aad G et al. (ATLAS Collab.). Eur. Phys. J. C 74:3117 2014.)
    [Google Scholar]
  66. 66.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 78:566 2018.)
    [Google Scholar]
  67. 67.
    Aad G et al. (ATLAS Collab.). J. High Energy Phys. 1512:105 2015.); Chatrchyan S et al. (CMS Collab.). Phys. Rev. D 89:092010 2014.)
    [Google Scholar]
  68. 68.
    Khachatryan V et al. (CMS Collab.). Phys. Rev. D 94:112005 2016.)
    [Google Scholar]
  69. 69.
    Aad G et al. (ATLAS Collab.). J. High Energy Phys. 2101:188 2021.)
    [Google Scholar]
  70. 70.
    Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 1812:117 2018.)
    [Google Scholar]
  71. 71.
    Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 1811:113 2018.)
    [Google Scholar]
  72. 72.
    Dixon LJ, Moult I, Zhu HX. Phys. Rev. D 100:014009 2019.); Chen H et al. J. High Energy Phys. 2008.28 2020.)
  73. 73.
    Komiske PT, Metodiev EM, Thaler J. J. High Energy Phys. 2007:6 2020.)
  74. 74.
    Kogler R et al. Rev. Mod. Phys. 91:045003 2019.)
  75. 75.
    Aaboud M et al. (ATLAS Collab.). Phys. Rev. Lett. 121:092001 2018.); Aad G et al. (ATLAS Collab.). Phys. Rev. D 101:052007 2020.); Acharya S et al. (ALICE Collab.). Phys. Rev. Lett. 128:102001 2022.); ALICE Collab. arXiv:2107.11303 [nucl-ex] (2021)
    [Google Scholar]
  76. 76.
    Dreyer FA, Salam GP, Soyez G. J. High Energy Phys. 1812:64 2018.)
  77. 77.
    Aad G et al. (ATLAS Collab.). Phys. Rev. Lett. 124:222002 2020.)
    [Google Scholar]
  78. 78.
    ALICE Collab Physics preliminary summary: measurement of the primary Lund plane density in pp collisions at = 13 TeV with ALICE Rep. ALICE-PUBLIC-2021-002 CERN Geneva: https://cds.cern.ch/record/2759456 2021.)
  79. 79.
    Aaij R et al. (LHCb Collab.). J. High Energy Phys. 2102:23 2021.)
    [Google Scholar]
  80. 80.
    Acharya S et al. (ALICE Collab.). J. High Energy Phys. 1908:133 2019.)
    [Google Scholar]
  81. 81.
    Aaboud M et al. (ATLAS Collab.). Phys. Rev. D 99:052004 2019.)
    [Google Scholar]
  82. 82.
    Aad G et al. (ATLAS Collab.). Phys. Rev. D 100:052011 2019.); Aad G et al. (ATLAS Collab.). J. High Energy Phys. 2112:131 2021.); Sirunyan AM et al. (CMS Collab.). Phys. Rev. Lett. 121:242301 2018.); Acharya S et al. (ALICE Collab.). J. High Energy Phys. 2109:211 2021.)
    [Google Scholar]
  83. 83.
    Aaij R et al. (LHCb Collab.). Phys. Rev. Lett. 123:232001 2019.)
    [Google Scholar]
  84. 84.
    Aad G et al. (ATLAS Collab.). Phys. Rev. D 93:052003 2016.); Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 1710:131 2017.)
    [Google Scholar]
  85. 85.
    Komiske PT, Metodiev EM, Schwartz MD. J. High Energy Phys. 1701:110 2017.); Kasieczka G, Kiefer N, Plehn T, Thompson JM SciPost Phys. 6:069 2019.)
  86. 86.
    Aad G et al. (ATLAS Collab.). Eur. Phys. J. C 79:1028 2019.). Erratum. Eur. Phys. J. C 80:1092 2020.)
    [Google Scholar]
  87. 87.
    Tumasyan A et al. (CMS Collab.). Phys. Rev. D 104:092013 2021.)
    [Google Scholar]
  88. 88.
    Aad G et al. (ATLAS Collab.). J. High Energy Phys. 2101:33 2021.); Khachatryan V et al. (CMS Collab.). Eur. Phys. J. C 76:128 2016.)
    [Google Scholar]
  89. 89.
    Aaboud M et al. (ATLAS Collab.). Phys. Rev. D 98:012003 2018.); Sirunyan AM et al. (CMS Collab.). Phys. Rev. D 103:052008 2021.)
    [Google Scholar]
  90. 90.
    Aaboud M et al. (ATLAS Collab.). J. High Energy Phys. 1810:159 2018.); Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 2007:125 2020.)
    [Google Scholar]
  91. 91.
    Aad G et al. (ATLAS Collab.). J. High Energy Phys. 1911:150 2019.)
    [Google Scholar]
  92. 92.
    Aaboud A et al. (ATLAS Collab.). Phys. Lett. B 780:578 2018.); Aad G et al. (ATLAS Collab.). J. High Energy Phys. 1910:203 2019.)
    [Google Scholar]
  93. 93.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 79:20 2019.); Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 79:969 2019.)
    [Google Scholar]
  94. 94.
    Aad G et al. (ATLAS Collab.). J. High Energy Phys. 2111:169 2021.)
    [Google Scholar]
  95. 95.
    Aaboud M et al. (ATLAS Collab.). Phys. Lett. B 781:55 2018.)
    [Google Scholar]
  96. 96.
    Aad G et al. (ATLAS Collab.). Eur. Phys. J. C 79:847 2019.)
    [Google Scholar]
  97. 97.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 78:965 2018.)
    [Google Scholar]
  98. 98.
    Aaij R et al. (LHCb Collab.). J. High Energy Phys. 1605:131 2016.)
    [Google Scholar]
  99. 99.
    Alioli S et al. Phys. Rev. D 92:094020 2015.)
  100. 100.
    Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 2105:285 2021.)
    [Google Scholar]
  101. 101.
    Lindert JM et al. Eur. Phys. J. C 77:829 2017.)
  102. 102.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 81:852 2021.)
    [Google Scholar]
  103. 103.
    Sirunyan AM et al. (CMS Collab.). Phys. Lett. B 789:19 2019.)
    [Google Scholar]
  104. 104.
    Sirunyan AM et al. (CMS Collab.). Phys. Rev. D 102:092012 2020.)
    [Google Scholar]
  105. 105.
    Aaboud M et al. (ATLAS Collab.). J. High Energy Phys. 1805:77 2018.)
    [Google Scholar]
  106. 106.
    Aad G et al. (ATLAS Collab.). Eur. Phys. J. C 75:82 2015.); Sirunyan AM et al. (CMS Collab.). Phys. Rev. D 96:072005 2017.); Aaboud M et al. (ATLAS Collab.). Phys. Lett. B 765:132 2017.)
    [Google Scholar]
  107. 107.
    Chatrchyan S et al. (CMS Collab.). J. High Energy Phys. 1201:10 2012.)
    [Google Scholar]
  108. 108.
    Aad G et al. (ATLAS Collab.). Eur. Phys. J. C 74:3168 2014.)
    [Google Scholar]
  109. 109.
    Aaboud M et al. (ATLAS Collab.). J. High Energy Phys. 1712:59 2017.)
    [Google Scholar]
  110. 110.
    Aad G et al. (ATLAS Collab.). J. High Energy Phys. 1608:159 2016.)
    [Google Scholar]
  111. 111.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 78:701 2018.)
    [Google Scholar]
  112. 112.
    ATLAS Collab Measurement of the effective leptonic weak mixing angle using electron and muon pairs from Z-boson decay in the ATLAS experiment at = 8 TeV Rep. ATLAS-CONF-2018-037 CERN Geneva: 2018.)
    [Google Scholar]
  113. 113.
    Aaij R et al. (LHCb Collab.). J. High Energy Phys. 1511:190 2015.)
    [Google Scholar]
  114. 114.
    Aaboud M et al. (ATLAS Collab.). Eur. Phys. J. C 78:110 2018.)
    [Google Scholar]
  115. 115.
    Aaij R et al. (LHCb Collab.). J. High Energy Phys. 2201:36 2022.)
    [Google Scholar]
  116. 116.
    Aaij R et al. (LHCb Collab.). Phys. Lett. B 767:110 2017.); Aad G et al. (ATLAS Collab.). J. High Energy Phys. 1405:68 2014.); Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 79:269 2019.); Aad G et al. (ATLAS Collab.). J. High Energy Phys. 2107:223 2021.)
    [Google Scholar]
  117. 117.
    Aaboud M et al. (ATLAS Collab.). Phys. Lett. B 776:295 2018.); Aad G et al. (ATLAS Collab.). J. High Energy Phys. 2007:44 2020.); Aaij R et al. (LHCb Collab.). J. High Energy Phys. 1501:64 2015.); Aaij R et al. (LHCb Collab.). Phys. Rev. Lett. 128:082001 2022.); Sirunyan AM et al. (CMS Collab.). Phys. Rev. D 102:032007 2020.); Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 2104:109 2021.)
    [Google Scholar]
  118. 118.
    Gribov VN, Lipatov LN. Sov. J. Nucl. Phys. 15:438 1972.); Altarelli G, Parisi G. Nucl. Phys. B 126:298 1977.); Dokshitzer YL Sov. Phys. JETP 46:641 1977.)
  119. 119.
    Vogt A, Moch S, Vermaseren JAM. Nucl. Phys. B 691:129 2004.)
  120. 120.
    Alekhin S, Blümlein J, Moch S, Placakyte R. Phys. Rev. D 96:014011 2017.)
  121. 121.
    Hou TJ et al. Phys. Rev. D 103:014013 2021.)
  122. 122.
    Bailey S et al. Eur. Phys. J. C 81:341 2021.)
  123. 123.
    Ball RD et al. (NNPDF Collab.). Eur. Phys. J. C 82:428 2022.)
    [Google Scholar]
  124. 124.
    Ball RD, Pearson RL. Eur. Phys. J. C 81:830 2021.)
  125. 125.
    Butterworth J et al. J. Phys. G 43:023001 2016.)
  126. 126.
    Ball RD et al. (PDF4LHC Work. Group.). arXiv:2203.05506 [hep-ph] 2022.)
  127. 127.
    Ball RD et al. (NNPDF Collab.). Eur. Phys. J. C 77:663 2017.)
    [Google Scholar]
  128. 128.
    Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 2006:18 2020.)
    [Google Scholar]
  129. 129.
    Aaboud M et al. (ATLAS Collab.). Phys. Rev. D 96:052004 2017.)
    [Google Scholar]
  130. 130.
    Sirunyan AM et al. (CMS Collab.). J. High Energy Phys. 2005:33 2020.)
    [Google Scholar]
  131. 131.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 78:789 2018.)
    [Google Scholar]
  132. 132.
    Aad G et al. (ATLAS Collab.). Phys. Rev. D 103:112006 2021.)
    [Google Scholar]
  133. 133.
    Tumasyan A et al. (CMS Collab.). J. High Energy Phys. 2111:153 2021.)
    [Google Scholar]
  134. 134.
    Aad G et al. (ATLAS Collab.). Phys. Rev. D 101:012002 2020.)
    [Google Scholar]
  135. 135.
    Sirunyan AM et al. (CMS Collab.). Eur. Phys. J. C 79:421 2019.)
    [Google Scholar]
  136. 136.
    Aad G et al. (ATLAS/CMS Collab.). J. High Energy Phys. 1608:45 2016.)
    [Google Scholar]
  137. 137.
    Aaij R et al. (LHCb Collab.). Nature Phys. 18:277 2022.)
    [Google Scholar]
  138. 138.
    Brivio I, Trott M. Phys. Rep. 793:1 2019.)
  139. 139.
    Aad G et al. (ATLAS Collab.). Eur. Phys. J. C 82:374 2022.)
    [Google Scholar]
  140. 140.
    Ethier JJ et al. J. High Energy Phys. 2111:89 2021.)
  141. 141.
    Arratia M et al. J. Instrum. 17:P01024 2022.)
/content/journals/10.1146/annurev-nucl-101920-014923
Loading
/content/journals/10.1146/annurev-nucl-101920-014923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error