1932

Abstract

Laser spectroscopy of muonic atoms has been recently used to probe properties of light nuclei with unprecedented precision. We introduce nuclear effects in hydrogen-like atoms, nucleon structure quantities (form factors, structure functions, polarizabilities), and their effects in the Lamb shift and hyperfine splitting (HFS) of muonic hydrogen (μH). Updated theory predictions for the Lamb shift and HFS in μH are presented. We review the challenges of the ongoing effort to measure the ground-state HFS in μH and its impact on our understanding of the nucleon spin structure. To narrow down this search, we present a novel theory prediction obtained by scaling the measured HFS in hydrogen while leveraging radiative corrections. We also summarize recent developments in the spectroscopy of simple atomic and molecular systems and emphasize how they allow for precise determinations of fundamental constants, bound-state QED tests, and New Physics searches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101920-024709
2022-09-26
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-101920-024709.html?itemId=/content/journals/10.1146/annurev-nucl-101920-024709&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pohl R et al. Nature 466:213 2010.)
    [Google Scholar]
  2. 2.
    Antognini A et al. Science 339:417 2013.)
    [Google Scholar]
  3. 3.
    Mohr PJ, Taylor BN, Newell DB. Rev. Mod. Phys. 84:41527 2012.)
    [Google Scholar]
  4. 4.
    Carlson CE. Prog. Part. Nucl. Phys. 82:59 2015.)
    [Google Scholar]
  5. 5.
    Karr JP, Marchand D, Voutier E. Nat. Rev. Phys. 2:11601 2020.)
    [Google Scholar]
  6. 6.
    Gao H, Vanderhaeghen M. Rev. Mod. Phys. 94:1015002 2022.)
    [Google Scholar]
  7. 7.
    Peset C, Pineda A, Tomalak O. Prog. Part. Nucl. Phys. 121:103901 2021.)
    [Google Scholar]
  8. 8.
    Pohl R et al. Science 353:6300669 2016.)
    [Google Scholar]
  9. 9.
    Jentschura U et al. Phys. Rev. A 83:4042505 2011.)
    [Google Scholar]
  10. 10.
    Krauth JJ et al. Nature 589:7843527 2021.)
    [Google Scholar]
  11. 11.
    Lensky V, Hagelstein F, Blin AH, Pascalutsa V. arXiv:2203.13030 [nucl-th] 2022.)
  12. 12.
    Kalinowski M. Phys. Rev. A 99:3030501 2019.)
    [Google Scholar]
  13. 13.
    Tiesinga E, Mohr PJ, Newell DB, Taylor BN. Rev. Mod. Phys. 93:2025010 2021.)
    [Google Scholar]
  14. 14.
    Mohr PJ, Newell DB, Taylor BN. Rev. Mod. Phys. 88:3035009 2016.)
    [Google Scholar]
  15. 15.
    Brandt AD et al. Phys. Rev. Lett. 128:2023001 2022.)
    [Google Scholar]
  16. 16.
    Grinin A et al. Science 370:65201061 2020.)
    [Google Scholar]
  17. 17.
    Bezginov N et al. Science 365:64571007 2019.)
    [Google Scholar]
  18. 18.
    Fleurbaey Het al Phys. Rev. Lett. 120:18183001 2018.)
    [Google Scholar]
  19. 19.
    Beyer A et al. Science 358:79 2017.)
    [Google Scholar]
  20. 20.
    Xiong W et al. Nature 575:7781147 2019.)
    [Google Scholar]
  21. 21.
    Horbatsch M, Hessels EA, Pineda A. Phys. Rev. C 95:3035203 2017.)
    [Google Scholar]
  22. 22.
    Higinbotham DW et al. Phys. Rev. C 93:5055207 2016.)
    [Google Scholar]
  23. 23.
    Lee G, Arrington JR, Hill RJ. Phys. Rev. D 92:1013013 2015.)
    [Google Scholar]
  24. 24.
    Sick I. Prog. Part. Nucl. Phys. 67:473 2012.)
    [Google Scholar]
  25. 25.
    Bernauer JC et al. Phys. Rev. Lett. 105:242001 2010.)
    [Google Scholar]
  26. 26.
    Lin YH, Hammer HW, Meißner UG. Phys. Rev. Lett. 128:5052002 2022.)
    [Google Scholar]
  27. 27.
    Alarcón JM, Higinbotham DW, Weiss C, Ye Z. Phys. Rev. C 99:4044303 2019.)
    [Google Scholar]
  28. 28.
    Lorenz I, Meißner UG, Hammer HW, Dong YB. Phys. Rev. D 91:1014023 2015.)
    [Google Scholar]
  29. 29.
    Belushkin MA, Hammer HW, Meißner UG. Phys. Rev. C 75:035202 2007.)
    [Google Scholar]
  30. 30.
    Mihovilovič M et al. Eur. Phys. J. A 57:3107 2021.)
    [Google Scholar]
  31. 31.
    Strauch S. Proc. Sci. NuFACT2018:136 2018.)
    [Google Scholar]
  32. 32.
    Dreisbach C et al. Proc. Sci. DIS2019:222 2019.)
    [Google Scholar]
  33. 33.
    Gasparian A et al. arXiv:2009.10510 [nucl-ex] 2020.)
  34. 34.
    Scheidegger S, Merkt F. CHIMIA 74:4285 2020.)
    [Google Scholar]
  35. 35.
    Krauth JJ et al. Proc. Sci. FFK2019:049 2020.)
    [Google Scholar]
  36. 36.
    Herrmann M et al. Phys. Rev. A 79:5052505 2009.)
    [Google Scholar]
  37. 37.
    Alighanbari S et al. Nature 581:7807152 2020.)
    [Google Scholar]
  38. 38.
    Pospelov M, Tsai YD. Phys. Lett. B 785:288 2018.)
    [Google Scholar]
  39. 39.
    Karshenboim SG, McKeen D, Pospelov M. Phys. Rev. D 90:7073004 2014. Addendum Phys. Rev. D 90:079905 2014.)
    [Google Scholar]
  40. 40.
    Liu YS, Cloët IC, Miller GA. Nucl. Phys. B 944:114638 2019.)
    [Google Scholar]
  41. 41.
    Carlson CE, Freid M. Phys. Rev. D 92:9095024 2015.)
    [Google Scholar]
  42. 42.
    Sick I, Trautmann D. Nucl. Phys. A 637:559 1998.)
    [Google Scholar]
  43. 43.
    Pohl R et al. Metrologia 54:L1 2017.)
    [Google Scholar]
  44. 44.
    Sato M et al. Proceedings of the 20th International Conference on Particles and Nuclei (PANIC 14) A Schmidt, C Sander 460–63 Hamburg, Ger.: DESY 2014.)
    [Google Scholar]
  45. 45.
    Adamczak A. Hyperfine Interact. 138:1–4343 2001.)
    [Google Scholar]
  46. 46.
    Dupays A et al. Phys. Rev. A 68:052503 2003.)
    [Google Scholar]
  47. 47.
    Bakalov D, Adamczak A, Stoilov M, Vacchi A. Hyperfine Interact. 233:1–397 2015.)
    [Google Scholar]
  48. 48.
    Pizzolotto C et al. Phys. Lett. A 403:127401 2021.)
    [Google Scholar]
  49. 49.
    Pizzolotto C et al. Eur. Phys. J. A 56:7185 2020.)
    [Google Scholar]
  50. 50.
    Pachucki K. Phys. Rev. A 53:2092 1996.)
    [Google Scholar]
  51. 51.
    Eides MI, Grotch H, Shelyuto VA. Phys. Rep. 342:63 2001.)
    [Google Scholar]
  52. 52.
    Borie E. Ann. Phys. 327:733 2012.)
    [Google Scholar]
  53. 53.
    Indelicato P. Phys. Rev. A 87:2022501 2013.)
    [Google Scholar]
  54. 54.
    Karshenboim SG, Korzinin EY, Shelyuto VA, Ivanov VG. J. Phys. Chem. Ref. Data 44:3031202 2015.)
    [Google Scholar]
  55. 55.
    Bethe HA, Salpeter EE. Quantum Mechanics of One- and Two-Electron Atoms Berlin: Springer 1957.)
    [Google Scholar]
  56. 56.
    Berestetskii VB, Lifshitz EM, Pitaevskii LP. Course of Theoretical Physics, Vol. 4 Quantum Electrodynamics London: Pergamon 1982.)
    [Google Scholar]
  57. 57.
    Friar JL. Ann. Phys. 122:151 1979.)
    [Google Scholar]
  58. 58.
    De Rújula A. Phys. Lett. B 693:555 2010.)
    [Google Scholar]
  59. 59.
    Distler MO, Bernauer JC, Walcher T. Phys. Lett. B 696:343 2011.)
    [Google Scholar]
  60. 60.
    Hagelstein F, Pascalutsa V. Phys. Rev. A 91:040502(R) 2015.)
    [Google Scholar]
  61. 61.
    Hagelstein F. Exciting nucleon in Compton scattering and hydrogen-like atoms PhD Thesis Johannes Gutenberg Univ. Mainz Mainz, Ger: 2017.)
    [Google Scholar]
  62. 62.
    Hagelstein F, Pascalutsa V. Proc. Sci. CD15:077 2016.)
    [Google Scholar]
  63. 63.
    Huong NT, Kou E, Moussallam B. Phys. Rev. D 93:11114005 2016.)
    [Google Scholar]
  64. 64.
    Zhou HQ, Pang HR. Phys. Rev. A 92:3032512 2015. Erratum Phys. Rev. A 93:069903 2016.)
    [Google Scholar]
  65. 65.
    Dorokhov AE et al. Phys. Part. Nucl. Lett. 14:6857 2017.)
    [Google Scholar]
  66. 66.
    Karshenboim SG, Shelyuto VA. Eur. Phys. J. D 75:249 2021.)
    [Google Scholar]
  67. 67.
    Iddings CK. Phys. Rev. B 138:446 1965.)
    [Google Scholar]
  68. 68.
    Drell S, Sullivan JD. Phys. Rev. 154:1477 1967.)
    [Google Scholar]
  69. 69.
    Hagelstein F, Miskimen R, Pascalutsa V. Prog. Part. Nucl. Phys. 88:29 2016.)
    [Google Scholar]
  70. 70.
    Pasquini B, Vanderhaeghen M. Annu. Rev. Nucl. Part. Sci. 68:75 2018.)
    [Google Scholar]
  71. 71.
    Gell-Mann M, Goldberger M, Thirring WE. Phys. Rev. 95:1612 1954.)
    [Google Scholar]
  72. 72.
    Pascalutsa V. Causality Rules: A Light Treatise on Dispersion Relations and Sum Rules San Rafael, CA: Morgan & Claypool 2018.)
    [Google Scholar]
  73. 73.
    Hagelstein F, Pascalutsa V. Nucl. Phys. A 1016:122323 2021.)
    [Google Scholar]
  74. 74.
    Miller GA. Phys. Lett. B 718:1078 2013.)
    [Google Scholar]
  75. 75.
    Pachucki K. Phys. Rev. A 60:3593 1999.)
    [Google Scholar]
  76. 76.
    Martynenko A. Phys. Atom. Nucl. 69:1309 2006.)
    [Google Scholar]
  77. 77.
    Carlson CE, Vanderhaeghen M. Phys. Rev. A 84:020102 2011.)
    [Google Scholar]
  78. 78.
    Birse MC, McGovern JA. Eur. Phys. J. A 48:120 2012.)
    [Google Scholar]
  79. 79.
    Gorchtein M, Llanes-Estrada FJ, Szczepaniak AP Phys. Rev. A 87:5052501 2013.)
    [Google Scholar]
  80. 80.
    Hill RJ, Paz G. Phys. Rev. D 95:9094017 2017.)
    [Google Scholar]
  81. 81.
    Tomalak O. Eur. Phys. J. A 55:564 2019.)
    [Google Scholar]
  82. 82.
    Alarcón JM, Lensky V, Pascalutsa V. Eur. Phys. J. C 74:42852 2014.)
    [Google Scholar]
  83. 83.
    Lensky V, Hagelstein F, Pascalutsa V, Vanderhaeghen M. Phys. Rev. D 97:7074012 2018.)
    [Google Scholar]
  84. 84.
    Fu Y, Feng X, Jin LC, Lu CF Phys. Rev. Lett. 128:17172002 2022.)
    [Google Scholar]
  85. 85.
    Pauk V, Carlson CE, Vanderhaeghen M. Phys. Rev. C 102:3035201 2020.)
    [Google Scholar]
  86. 86.
    Can KU et al. Phys. Rev. D 102:114505 2020.)
    [Google Scholar]
  87. 87.
    Hannaford-Gunn A et al. Proc. Sci. LATTICE2019:278 2020.)
    [Google Scholar]
  88. 88.
    Chambers A et al. Phys. Rev. Lett. 118:24242001 2017.)
    [Google Scholar]
  89. 89.
    Fu Y. Proc. Sci LATTICE2021:607 (2022)
    [Google Scholar]
  90. 90.
    Can KU et al. SciPost Phys. Proc 6003 (2022)
    [Google Scholar]
  91. 91.
    Carlson CE, Nazaryan V, Griffioen K. Phys. Rev. A 83:042509 2011.)
    [Google Scholar]
  92. 92.
    Borah K, Hill RJ, Lee G, Tomalak O. Phys. Rev. D 102:7074012 2020.)
    [Google Scholar]
  93. 93.
    Volotka A, Shabaev V, Plunien G, Soff G. Eur. Phys. J. D 33:23 2005.)
    [Google Scholar]
  94. 94.
    Drell S, Hearn AC. Phys. Rev. Lett. 16:908 1966.)
    [Google Scholar]
  95. 95.
    Gerasimov S. Sov. J. Nucl. Phys. 2:430 1966.)
    [Google Scholar]
  96. 96.
    Pascalutsa V, Vanderhaeghen M. Phys. Rev. D 91:051503(R) 2015.)
    [Google Scholar]
  97. 97.
    Lensky V, Pascalutsa V, Vanderhaeghen M, Kao C. Phys. Rev. D 95:7074001 2017.)
    [Google Scholar]
  98. 98.
    Fersch R et al. Phys. Rev. C 96:6065208 2017.)
    [Google Scholar]
  99. 99.
    Slifer K. AIP Conf. Proc. 1155:125 2009.)
    [Google Scholar]
  100. 100.
    Zielinski R. Proc. Sci. CD15:090 2016.)
    [Google Scholar]
  101. 101.
    Ruth D et al. arXiv:2204.10224 [nucl-ex] 2022.)
  102. 102.
    Faustov R, Gorbacheva I, Martynenko A. Proceedings of the Saratov Fall Meeting 2005: Laser Physics and Photonics, Spectroscopy and Molecular Modeling VI VL Derbov, LA Melnikov, LM Babkov, Paper 61650M Bellingham, WA: SPIE 2006.)
    [Google Scholar]
  103. 103.
    Carlson CE, Nazaryan V, Griffioen K. Phys. Rev. A 78:022517 2008.)
    [Google Scholar]
  104. 104.
    Zielinski R. 2017. The g2p experiment: a measurement of the proton's spin structure functions PhD Thesis Univ. N.H. Durham: 2017.)
    [Google Scholar]
  105. 105.
    Hagelstein F. Few Body Syst. 59:593 2018.)
    [Google Scholar]
  106. 106.
    Lensky V, Pascalutsa V. Eur. Phys. J. C 65:195 2010.)
    [Google Scholar]
  107. 107.
    Lensky V, McGovern J, Pascalutsa V. Eur. Phys. J. C 75:12604 2015.)
    [Google Scholar]
  108. 108.
    Korzinin EYu, Ivanov VG, Karshenboim SG. Phys. Rev. D 88:125019 2013.)
    [Google Scholar]
  109. 109.
    Karshenboim SG, Korzinin EYu, Shelyuto VA, Ivanov VG. Phys. Rev. A 98:062512 2018.)
    [Google Scholar]
  110. 110.
    Amaro P et al. SciPost Phys 13020 2022.)
    [Google Scholar]
  111. 111.
    Faustov RN, Martynenko AP. Phys. Atom. Nucl. 61:471 1998.)
    [Google Scholar]
  112. 112.
    Karshenboim SG, Korzinin EYu, Ivanov VG. JETP Lett. 89:216 2009.)
    [Google Scholar]
  113. 113.
    Brodsky SJ, Erickson GW. Phys. Rev. 148:26 1966.)
    [Google Scholar]
  114. 114.
    Peset C, Pineda A. J. High Energy Phys. 1704:60 2017.)
    [Google Scholar]
  115. 115.
    Hellwig H et al. IEEE Trans. Instrum. Meas. 19:4200 1970.)
    [Google Scholar]
  116. 116.
    Karshenboim SG. Can. J. Phys. 78:639 2000.)
    [Google Scholar]
  117. 117.
    Karshenboim SG. Phys. Lett. A 225:97 1997.)
    [Google Scholar]
  118. 118.
    Tomalak O. Eur. Phys. J. A 54:13 2018.)
    [Google Scholar]
  119. 119.
    Kanda S et al. Phys. Lett. B 815:136154 2021.)
    [Google Scholar]
  120. 120.
    Ohayon B, Burkley Z, Crivelli P. SciPost Phys. Proc. 5:029 2021.)
    [Google Scholar]
  121. 121.
    Janka G, Ohayon B, Crivelli P. EPJWeb Conf. 262:01001 2022.)
    [Google Scholar]
  122. 122.
    Parthey CG et al. Phys. Rev. Lett. 107:203001 2011.)
    [Google Scholar]
  123. 123.
    Karshenboim SG et al. Phys. Lett. B 795:432 2019.)
    [Google Scholar]
  124. 124.
    Pachucki K, Patkóš V, Yerokhin VA. Phys. Rev. A 97:6062511 2018.)
    [Google Scholar]
  125. 125.
    Yerokhin VA, Pachucki K, Patkóš V. Ann. Phys. 531:51800324 2019.)
    [Google Scholar]
  126. 126.
    Diepold M et al. Ann. Phys. 396:220 2018.)
    [Google Scholar]
  127. 127.
    Ji C et al. J. Phys. G 45:9093002 2018.)
    [Google Scholar]
  128. 128.
    Karr JP, Haidar M, Hilico L, Korobov VI. Recent Progress in Few-Body Physics: Proceedings of the 22nd International Conference on Few-Body Problems in Physics NA Orr, M Ploszajczak, FM Marqués, J Carbonell 75–81 Cham, Switz: Springer 2020.)
    [Google Scholar]
  129. 129.
    Patra S et al. Science 369:65081238 2020.)
    [Google Scholar]
  130. 130.
    Kortunov IV et al. Nat. Phys. 17:5569 2021.)
    [Google Scholar]
  131. 131.
    Sturm S et al. Nature 506:7489467 2014.)
    [Google Scholar]
  132. 132.
    Heiße F et al. Phys. Rev. A 100:2022518 2019.)
    [Google Scholar]
  133. 133.
    Zatorski J et al. Phys. Rev. A 96:1012502 2017.)
    [Google Scholar]
  134. 134.
    Schmidt J et al. Phys. Rev. Appl. 14:2024053 2020.)
    [Google Scholar]
  135. 135.
    Czachorowski P, Puchalski M, Komasa J, Pachucki K. Phys. Rev. A 98:5052506 2018.)
    [Google Scholar]
  136. 136.
    Hölsch N et al. Phys. Rev. Lett. 122:10103002 2019.)
    [Google Scholar]
  137. 137.
    Safronova MS et al. Rev. Mod. Phys. 90:2025008 2018.)
    [Google Scholar]
  138. 138.
    Jones MPA, Potvliege RM, Spannowsky M. Phys. Rev. Res. 2:1013244 2020.)
    [Google Scholar]
  139. 139.
    Frugiuele C, Peset C. J. High Energy Phys. 2205:2 2022.)
    [Google Scholar]
  140. 140.
    Kelly JJ. Phys. Rev. C 70:068202 2004.)
    [Google Scholar]
  141. 141.
    Bradford R, Bodek A, Budd H, Arrington J. Nucl. Phys. B Proc. Suppl. 159:127 2006.)
    [Google Scholar]
  142. 142.
    Arrington J, Melnitchouk W, Tjon JA. Phys. Rev. C 76:035205 2007.)
    [Google Scholar]
  143. 143.
    Arrington J, Sick I. Phys. Rev. C 76:035201 2007.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101920-024709
Loading
/content/journals/10.1146/annurev-nucl-101920-024709
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error