1932

Abstract

This article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The basic idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102014-021930
2015-10-19
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/nucl/65/1/annurev-nucl-102014-021930.html?itemId=/content/journals/10.1146/annurev-nucl-102014-021930&mimeType=html&fmt=ahah

Literature Cited

  1. Adey D. 1.  et al.arXiv:1308.6822 [physics.acc-ph] 2013.
  2. Bross A. 2.  Proceedings of the 2013 North American Particle Accelerator Conference T Satogata, C Petit-Jean-Genaz, VRW Schaa, pap. TUOBD4 JACoW.org: Jt. Accel. Conf. Website 2013. [Google Scholar]
  3. Bross A. 3.  Proceedings of the 2013 European Physical Society Conference on High Energy Physics pap. EPS-HEP2013 Trieste, It: Proc. Sci 2013. [Google Scholar]
  4. Geer S. 4.  Phys. Rev. D 57:6989 1998. [Google Scholar]
  5. Giesch M, Kuiper B, van der Meer S. 5.  Nucl. Instrum. Methods 20:58 1963. [Google Scholar]
  6. Choubey S. 6.  et al. arXiv1112.2853 [hep-ex] 2011.
  7. Abe K. 7.  et al.arXiv:1407.7389 [hep-ex] 2014.
  8. Adams C. 8.  et al.arXiv:1307.7335 [hep-ex] 2013.
  9. Agostino L. 9.  J. Phys. Conf. Ser. 566:012002 2014. [Google Scholar]
  10. Mohapatra R. 10.  Phys. Rev. Lett. 56:561 1986. [Google Scholar]
  11. Mohapatra R. 11.  Phys. Rev. D 34:3457 1986. [Google Scholar]
  12. Kusenko A, Takahashi F, Yanagida TT. 12.  Phys. Lett. B 693:144 2010. [Google Scholar]
  13. Abazajian K. 13.  et al. arXiv1204.5379 [hep-ph] 2012.
  14. Aguilar A. 14.  et al. Phys. Rev. D 64:112007 2001. [Google Scholar]
  15. Aguilar-Arevalo A. 15.  et al. Phys. Rev. Lett. 110:161801 2013. [Google Scholar]
  16. Anselmann P. 16.  et al. Phys. Lett. B 342:440 1995. [Google Scholar]
  17. Hampel W. 17.  et al. Phys. Lett. B 420:114 1998. [Google Scholar]
  18. Abdurashitov D. 18.  et al. Phys. Rev. Lett. 77:4708 1996. [Google Scholar]
  19. Abdurashitov J. 19.  et al. Phys. Rev. C 59:2246 1999. [Google Scholar]
  20. Abdurashitov J. 20.  et al. Phys. Rev. C 73:045805 2006. [Google Scholar]
  21. Mention G. 21.  et al. Phys. Rev. D 83:073006 2011. [Google Scholar]
  22. Mueller T. 22.  et al. Phys. Rev. C 83:054615 2011. [Google Scholar]
  23. Huber P. 23.  Phys. Rev. C 84:024617 2011. [Google Scholar]
  24. Huber P, Bross A, Palmer M. 24.  arXiv1411.0629 [hep-ex] 2014.
  25. Borodovsky L. 25.  et al. Phys. Rev. Lett. 68:274 1992. [Google Scholar]
  26. Armbruster B. 26.  et al. Phys. Rev. D 65:112001 2002. [Google Scholar]
  27. Astier P. 27.  et al. Nucl. Phys. B 611:3 2001. [Google Scholar]
  28. Antonello M. 28.  et al.arXiv:1209.0122 [hep-ex] 2012.
  29. Ashie Y. 29.  et al. Phys. Rev. D 71:112005 2005. [Google Scholar]
  30. Cleveland B. 30.  et al. Astrophys. J. 496:505 1998. [Google Scholar]
  31. Kaether F. 31.  et al. Phys. Lett. B 685:47 2010. [Google Scholar]
  32. Abdurashitov J. 32.  et al. Phys. Rev. C 80:015807 2009. [Google Scholar]
  33. Hosaka J. 33.  et al. Phys. Rev. D 73:112001 2006. [Google Scholar]
  34. Aharmim B. 34.  et al. Phys. Rev. C 75:045502 2007. [Google Scholar]
  35. Aharmim B. 35.  et al. Phys. Rev. C 72:055502 2005. [Google Scholar]
  36. Aharmim B. 36.  et al. Phys. Rev. Lett. 101:111301 2008. [Google Scholar]
  37. Aharmim B. 37.  et al. arXiv1109.0763 [nucl-ex] 2011.
  38. Bellini G. 38.  et al. Phys. Rev. Lett. 107:141302 2011. [Google Scholar]
  39. Bellini G. 39.  et al. Phys. Rev. D 82:033006 2010. [Google Scholar]
  40. Aguilar-Arevalo AA. 40.  et al. Phys. Rev. Lett. 103:061802 2009. [Google Scholar]
  41. Cheng G. 41.  et al. Phys. Rev. D 86:052009 2012. [Google Scholar]
  42. Adamson P. 42.  et al. Phys. Rev. D 81:052004 2010. [Google Scholar]
  43. Adamson P. 43.  et al. Phys. Rev. Lett. 107:011802 2011. [Google Scholar]
  44. Declais Y. 44.  et al. Nucl. Phys. B 434:503 1995. [Google Scholar]
  45. Declais Y. 45.  et al. Phys. Lett. B 338:383 1994. [Google Scholar]
  46. Kuvshinnikov A. 46.  et al. JETP Lett. 54:253 1991. [Google Scholar]
  47. Vidyakin G. 47.  et al. Sov. Phys. JETP 66:243 1987. [Google Scholar]
  48. Kwon H. 48.  et al. Phys. Rev. D 24:1097 1981. [Google Scholar]
  49. Zacek G. 49.  et al. Phys. Rev. D 34:2621 1986. [Google Scholar]
  50. Apollonio M. 50.  et al. Eur. Phys. J. C 27:331 2003. [Google Scholar]
  51. Boehm F. 51.  et al. Phys. Rev. D 64:112001 2001. [Google Scholar]
  52. Abe Y. 52.  et al. Phys. Rev. D 86:052008 2012. [Google Scholar]
  53. Ahn J. 53.  et al. Phys. Rev. Lett. 108:191802 2012. [Google Scholar]
  54. Gando A. 54.  et al. Phys. Rev. D 83:052002 2011. [Google Scholar]
  55. Dydak F. 55.  et al. Phys. Lett. B 134:281 1984. [Google Scholar]
  56. Eitel K. 56.  et al. Prog. Part. Nucl. Phys. 48:89 2002. [Google Scholar]
  57. Auerbach L. 57.  et al. Phys. Rev. C 64:065501 2001. [Google Scholar]
  58. Kopp J, Maltoni M, Schwetz T. 58.  Phys. Rev. Lett. 107:091801 2011. [Google Scholar]
  59. Giunti C, Laveder M. 59.  Phys. Lett. B 706:200 2011. [Google Scholar]
  60. Karagiorgi G. 60.  arXiv1110.3735 [hep-ph] 2011.
  61. Giunti C, Laveder M. 61.  Phys. Rev. D 84:093006 2011. [Google Scholar]
  62. Giunti C, Laveder M. 62.  Phys. Rev. D 84:073008 2011. [Google Scholar]
  63. Giunti C. 63.  et al. Phys. Rev. D 86:113014 2012. [Google Scholar]
  64. Archidiacono M. 64.  et al. arXiv1302.6720 [astro-ph.CO] 2013.
  65. Kopp J, Machado P, Maltoni M, Schwetz T. 65.  arXiv1303.3011 [hep-ph] 2013.
  66. An F. 66.  et al. Phys. Rev. Lett. 113:141802 2014. [Google Scholar]
  67. Sousa A. 67.  arXiv1502.07715 [hep-ex] 2015.
  68. Abe K. 68.  et al. arXiv1410.8811 [hep-ex] 2014.
  69. Ade P. 69.  et al. Astron. Astrophys. 571:A16 2014. [Google Scholar]
  70. Hinshaw G. 70.  et al. arXiv1212.5226 [astro-ph.CO] 2012.
  71. Das S. 71.  et al. arXiv1301.1037 [astro-ph.CO] 2013.
  72. Reichardt C. 72.  et al. Astrophys. J. 755:70 2012. [Google Scholar]
  73. Story K. 73.  et al. arXiv1210.7231 [astro-ph.CO] 2012.
  74. Percival WJ. 74.  et al. Mon. Not. R. Astron. Soc. 401:2148 2010. [Google Scholar]
  75. Padmanabhan N. 75.  et al. arXiv1202.0090 [astro-ph.CO] 2012.
  76. Blake C. 76.  et al. Mon. Not. R. Astron. Soc. 418:1707 2011. [Google Scholar]
  77. Anderson L. 77.  et al. Mon. Not. R. Astron. Soc. 427:3435 2013. [Google Scholar]
  78. Hannestad S, Hansen RS, Tram T. 78.  Phys. Rev. Lett. 112:031802 2014. [Google Scholar]
  79. Dasgupta B, Kopp J. 79.  Phys. Rev. Lett. 112:031803 2014. [Google Scholar]
  80. Mirizzi A, Mangano G, Pisanti O, Saviano N. 80.  arXiv1410.1385 [hep-ph] 2014.
  81. Huber P, Mezzetto M, Schwetz T. 81.  J. High Energy Phys. 0803:021 2008. [Google Scholar]
  82. Neuffer DV. 82.  Proceedings of the Telemark Conference on Neutrino Mass V Barger, D Cline 199 New York: Am. Inst. Phys 1980. [Google Scholar]
  83. Neuffer DV, Liu A. 83.  Proceedings of the 4th International Particle Accelerator Conference Z Dai, C Petit-Jean-Genaz, VRW Schaa, C Zhang, pap. TUPFI055 JACoW.org: Jt. Accel. Conf. Website 2013. [Google Scholar]
  84. Liu A, Bross A, Neuffer D, Lee SY. 84.  Proceedings of the 2013 North American Particle Accelerator Conference T Satogata, C Petit-Jean-Genaz, VRW Schaa, pap. TUPBA18. JACoW.org: Jt. Accel. Conf. Website 2013. [Google Scholar]
  85. Lackowski T. 85.  et al. arXiv1309.1389 [physics.ins-det] 2013.
  86. Hylen J. 86.  et al. Conceptual Design for the Technical Components of the Neutrino Beam for the Main Injector (NuMI Batavia, IL: Fermi Natl. Accel. Lab http://inspirehep.net/record/448599/files/fermilab-tm-2018.PDF 1997. [Google Scholar]
  87. Wildner E. 87.  Presented at Int. Workshop Neutrino Fact. Future Neutrino Facil. (NUFACT14), Glasgow 2014.
  88. Adey D. 88.  et al. arXiv1305.1419 [physics.acc-ph] 2013.
  89. Liu A, Bross A, Neuffer DV. 89.  Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. TUPRI005. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  90. Yamanoi Y. 90.  et al. IEEE Trans. Magn. 32:2147 1996. [Google Scholar]
  91. Roberts T. 91.  G4beamline: aSwiss Army Knifefor Geant4, optimized for simulating beamlines Version 2.12. http://www.muonsinternal.com/muons3/G4beamline 2013. [Google Scholar]
  92. Liu A, Bross A, Neuffer DV. 92.  Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. IPAC-2014-TUPRI006. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  93. Neuffer DV. 93.  2014. Presented at Int. Workshop Neutrino Fact. Future Neutrino Facil. (NUFACT14), Glasgow 2014.
  94. Liu A. 93a.  Design and simulation of the nuSTORM facility PhD thesis, Dep. Phys., Indiana Univ., Bloomington. http://inspirehep.net/record/1370195/files/fermilab-thesis-2015-04.pdf 2015. [Google Scholar]
  95. Lagrange J. 94.  2014. Presented at Int. Workshop Neutrino Fact. Future Neutrino Facil. (NUFACT14), Glasgow 2014.
  96. Lagrange J. 95.  et al. Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. IPAC-2014-TUPRO073. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  97. Appleby R. 96.  et al. Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. IPAC-2014-TUPRI013. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  98. Søby L. 97.  nuSTORM beam instrumentation eDMS doc. 1284677 Geneva: CERN https://edms.cern.ch/document/1284677/1/TAB3 2013. [Google Scholar]
  99. Guardincerri E. 98.  J. Phys. Conf. Ser. 404:012036 2012. [Google Scholar]
  100. Rubbia A. 99.  J. Phys. Conf. Ser. 408:012006 2013. [Google Scholar]
  101. Michael DG. 100.  et al. Nucl. Instrum. Methods A 596:190 2008. [Google Scholar]
  102. Ambrosio G. 101.  et al. Design study for a staged very large hadron collider Fermilab-TM-2149 Batavia, IL: Fermi Natl. Accel. Lab http://lss.fnal.gov/archive/test-tm/2000/fermilab-tm-2149.pdf 2001. [Google Scholar]
  103. Vysotsky V. 102.  et al. IEEE Trans. Appl. Supercond. 20:402 2010. [Google Scholar]
  104. Foussart A. 103.  et al. IEEE Trans. Appl. Supercond. 22:42000505 2012. [Google Scholar]
  105. Wesche R. 104.  et al. Proceedings of the Workshop on Accelerator Magnet Superconductors, Design, and Optimization (WAMSDO)68 Geneva: CERN http://cds.cern.ch/record/1163718/files/p68.pdf 2009. [Google Scholar]
  106. Adey D. 105.  2014. Presented at Int. Workshop Neutrino Fact. Future Neutrino Facil. (NUFACT14), Glasgow 2014.
  107. Mokhov N, Striganov S. 106.  AIP Conf. Proc. 896:50 2007. [Google Scholar]
  108. Andreopoulos C. 107.  et al. Nucl. Instrum. Methods A 614:87 2010. [Google Scholar]
  109. Apostolakis J, Wright DH. 108.  AIP Conf. Proc. 896:1 2007. [Google Scholar]
  110. Bayes R. 109.  et al. Phys. Rev. D 86:093015 2012. [Google Scholar]
  111. Hoecker A. 110.  et al. Proc. Sci. ACAT:040 2007. [Google Scholar]
  112. Brun R, Rademakers F. 111.  Nucl. Instrum. Methods A 389:81 1997. [Google Scholar]
  113. Huber P, Lindner M, Winter W. 112.  Comput. Phys. Commun. 167:195 2005. [Google Scholar]
  114. Baller B. 113.  et al. J. Instrum. 9:T05005 2014. [Google Scholar]
  115. de Gouvêa A, Kelly KJ, Kobach A. 114.  arXiv1412.1479 [hep-ph] 2014.
  116. Gallardo J. 115.  et al. eConf C960625:R4 1996. [Google Scholar]
  117. Ankenbrandt CM. 116.  et al. Phys. Rev. Spec. Top. Accel. Beams 2:081001 1999. [Google Scholar]
  118. Alsharo'a MM. 117.  et al. Phys. Rev. Spec. Top. Accel. Beams 6:081001 2003. [Google Scholar]
  119. Parkhomchuk V, Skrinsky A. 118.  Rev. Accel. Sci. Technol. 1:237 2008. [Google Scholar]
  120. Neuffer D. 119.  AIP Conf. Proc. 156:201 1987. [Google Scholar]
  121. Geer S. 120.  Annu. Rev. Nucl. Part. Sci. 59:347 2009. [Google Scholar]
  122. Parkhomchuk V, Skrinsky A. 121.  AIP Conf. Proc. 352:7 1996. [Google Scholar]
  123. Neuffer DV. 122.  Part. Accel. 14:75 1983. [Google Scholar]
  124. Palmer R. 123.  et al. Phys. Rev. Spec. Top. Accel. Beams 8:061003 2005. [Google Scholar]
  125. Palmer M. 124.  Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. TUPME012. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  126. Palmer M. 125.  Proceedings of the 2013 International Workshop on Beam Cooling and Related Topics (COOL13) LV Jørgenson, VRW Schaa, pap. MOAM2HA02. JACoW.org: Jt. Accel. Conf. Website 2013. [Google Scholar]
  127. Torun Y. 126.  et al. Proceedings of the 1st International Particle Accelerator Conference S Kurokawa, K Oide, pap. WEPE065. JACoW.org: Jt. Accel. Conf. Website 2010. [Google Scholar]
  128. Delahaye JP. 127.  et al. arXiv1308.0494 [physics.acc-ph] 2013.
  129. Delahaye JP. 128.  et al. Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. IPAC-2014-WEZA02. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  130. Bogomilov M. 129.  et al. Phys. Rev. Spec. Top. Accel. Beams 17:121002 2014. [Google Scholar]
  131. Stratakis D, Fernow R, Berg J, Palmer R. 130.  Phys. Rev. Spec. Top. Accel. Beams 16:091001 2013. [Google Scholar]
  132. Stratakis D, Neuffer DV. 131.  Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. TUPME021. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  133. Derbenev Y, Johnson R. 132.  Phys. Rev. Spec. Top. Accel. Beams 8:041002 2005. [Google Scholar]
  134. Yonehara K. 133.  Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. TUPME014. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  135. Yonehara K. 134.  Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. TUPME015. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  136. Hanlet P. 135.  et al. Proceedings of the 2006 European Particle Accelerator Conference C Prior, no. TUPCH147 Mulhouse, Fr: Eur. Phys. Sci. Accel. Group 2006. [Google Scholar]
  137. Kaplan D, Snopok P, Dobbs A. 136.  Proceedings of the 5th International Particle Accelerator Conference C Petit-Jean-Genaz, G Arduini, P Michel, VRW Schaa, pap. THPRI030. JACoW.org: Jt. Accel. Conf. Website 2014. [Google Scholar]
  138. Heise J. 137.  AIP Conf. Proc. 1604:331 2014. [Google Scholar]
/content/journals/10.1146/annurev-nucl-102014-021930
Loading
/content/journals/10.1146/annurev-nucl-102014-021930
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error