1932

Abstract

The violation of symmetry between matter and antimatter in the neutral and meson systems is well established, with a high degree of consistency between all available experimental measurements and with the Standard Model of particle physics. On the basis of the up-to-now-unbroken symmetry, the violation of symmetry strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal . Many searches for violation have been performed and proposed using different observables and experimental approaches. These include -odd observables, such as triple products in weak decays, and genuine observables, such as permanent electric dipole moments of nondegenerate stationary states and the breaking of the reciprocity relation. We discuss the conceptual basis of the required exchange of initial and final states with unstable particles, using quantum entanglement and the decay as a filtering measurement, for the case of neutral and mesons. Using this method, the BaBar experiment at SLAC has clearly observed violation in mesons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102014-022251
2015-10-19
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/nucl/65/1/annurev-nucl-102014-022251.html?itemId=/content/journals/10.1146/annurev-nucl-102014-022251&mimeType=html&fmt=ahah

Literature Cited

  1. Sachs RG. 1.  The Physics of Time Reversal Chicago: Univ. Chicago Press 1987. [Google Scholar]
  2. Bell JS. 2.  Proceedings of the 1979 Workshop on Neutral-Current Interactions in Atoms WL Williams 288 Paris: IN2P3 1980. [Google Scholar]
  3. Eddington AS. 3.  The Nature of the Physical World Cambridge, UK: Cambridge Univ. Press 1929. [Google Scholar]
  4. Davies PCW. 4.  The Physics of Time Asymmetry Berkeley: Univ. Calif. Press 1977. [Google Scholar]
  5. Guth AH, Pi SY. 5.  Phys. Rev. Lett. 49:1110 1982. [Google Scholar]
  6. Guth AH. 6.  Phys. Rev. D 23:347 1981. [Google Scholar]
  7. Christenson JH, Cronin JW, Fitch VL, Turlay R. 7.  Phys. Rev. Lett. 13:138 1964. [Google Scholar]
  8. Christenson JH, Cronin JW, Fitch VL, Turlay R. 8.  Phys. Rev. B 140:74 1965. [Google Scholar]
  9. Aubert B. 9.  et al. (BaBar Collab.) Phys. Rev. Lett. 87:091801 2001. [Google Scholar]
  10. Abe K. 10.  et al. (Belle Collab.) Phys. Rev. Lett. 87:091802 2001. [Google Scholar]
  11. Kobayashi M, Maskawa T. 11.  Prog. Theor. Phys. 49:652 1973. [Google Scholar]
  12. Cabibbo N. 12.  Phys. Rev. Lett. 10:531 1963. [Google Scholar]
  13. Beringer J. 13.  et al. (Part. Data Group) Phys. Rev. D 86:010001 2012. [Google Scholar]
  14. Antonelli M. 14.  Phys. Rep. 494:197 2010. [Google Scholar]
  15. Bevan AJ. 15.  et al. (BaBar Collab., Belle Collab.) Eur. Phys. J. C 74:3026 2014. [Google Scholar]
  16. Schwinger J. 16.  Phys. Rev. 82:914 1951. [Google Scholar]
  17. Lüders G. 17.  Ann. Phys. N.Y 2:1 1957. [Google Scholar]
  18. Lüders G. 18.  Ann. Phys. N.Y. 281:1004 2000. [Google Scholar]
  19. Pauli W, Rosenfelf L, Weisskopf V. 19.  Niels Bohr and the Development of Physics New York: Pergamon 1995. [Google Scholar]
  20. Wolfenstein L. 20.  Int. J. Mod. Phys. E 8:501 1999. [Google Scholar]
  21. Wigner EP. 21.  Nachr. Ges. Wiss. Göttingen 32:35 1935. [Google Scholar]
  22. Wolfenstein L. 22.  Phys. Rev. Lett. 83:911 1999. [Google Scholar]
  23. Einstein A, Podolsky B, Rosen N. 23.  Phys. Rev. 47:777 1935. [Google Scholar]
  24. Reid MD. 24.  et al. Rev. Mod. Phys. 81:1727 2009. [Google Scholar]
  25. Bañuls MC, Bernabéu J. 25.  Phys. Lett. B 464:117 1999. [Google Scholar]
  26. Bañuls MC, Bernabéu J. 26.  Nucl. Phys. B 590:19 2000. [Google Scholar]
  27. Bernabéu J, Martínez-Vidal F. 27.  Rev. Mod. Phys. 87:165 2015. [Google Scholar]
  28. Bernabéu J, Martínez-Vidal F, Villanueva-Pérez P. 28.  J. High Energy Phys. 08:064 2012. [Google Scholar]
  29. Lees JP. 29.  et al. (BaBar Collab.) Phys. Rev. Lett. 109:211801 2012. [Google Scholar]
  30. Zeller M. 30.  Physics 5:129 2012. [Google Scholar]
  31. Schwarzschild BM. 31.  Phys. Today 65:16 2012. [Google Scholar]
  32. Bednaršek N, Lézé B. 32.  Nature 491:640 2012. [Google Scholar]
  33. Rao A. 33.  Phys. World Nov:21 2012. [Google Scholar]
  34. Johnston H. 34.  Phys. World Dec:14 2012. [Google Scholar]
  35. Henley EM. 35.  Int. J. Mod. Phys. E 22:1330010 2013. [Google Scholar]
  36. Galindo A, Pascual P. 36.  Quantum Mechanics I Berlin: Springer 1990. [Google Scholar]
  37. Lee TD. 37.  Particle Physics and Introduction to Field Theory New York: Harwood Acad 1990. [Google Scholar]
  38. Branco GC, Lavoura L, Silva JP. 38.  CP Violation Oxford, UK: Oxford Univ. Press 1999. [Google Scholar]
  39. Alavi-Harati A. 39.  et al. (KTeV Collab.) Phys. Rev. Lett. 84:408 2000. [Google Scholar]
  40. Hsueh SY. 40.  et al. Phys. Rev. D 38:2056 1988. [Google Scholar]
  41. Amo Sanchez Pdel. 41.  et al. (BaBar Collab.) Phys. Rev. D 81:111103 2010. [Google Scholar]
  42. Lees JP. 42.  et al. (BaBar Collab.) Phys. Rev. D 84:031103 2011. [Google Scholar]
  43. Abe M. 43.  et al. (KEK-E246 Collab.) Phys. Rev. Lett. 93:131601 2004. [Google Scholar]
  44. Anisimovsky VV. 44.  et al. (KEK-E246 Collab.) Phys. Lett. B 562:166 2003. [Google Scholar]
  45. Danneberg N. 45.  et al. Phys. Rev. Lett. 94:021802 2005. [Google Scholar]
  46. Gronau M, Rosner JL. 46.  Phys. Rev. D 84:096013 2011. [Google Scholar]
  47. Blanke E. 47.  et al. Phys. Rev. Lett. 51:355 1983. [Google Scholar]
  48. Khriplovich IB, Lamoreaux SK. 48.  CP Violation Without Strangeness Berlin: Springer 1997. [Google Scholar]
  49. Peccei RD, Quinn HR. 49.  Phys. Rev. Lett. 38:1440 1977. [Google Scholar]
  50. Weinberg S. 50.  Phys. Rev. Lett. 40:223 1978. [Google Scholar]
  51. Wilczek F. 51.  Phys. Rev. Lett. 40:279 1978. [Google Scholar]
  52. Sandars PGH. 52.  Contemp. Phys. 42:97 2001. [Google Scholar]
  53. Pospelov M, Ritz A. 53.  Ann. Phys. 318:119 2005. [Google Scholar]
  54. Hudson JJ. 54.  et al. Nature 473:493 2011. [Google Scholar]
  55. Baker CA. 55.  et al. Phys. Rev. Lett. 97:131801 2006. [Google Scholar]
  56. Griffith WC. 56.  et al. Phys. Rev. Lett. 102:101601 2009. [Google Scholar]
  57. Bennett GW. 57.  et al. (Muon g − 2 Collab.) Phys. Rev. D 80:052008 2009. [Google Scholar]
  58. Pondrom L. 58.  et al. Phys. Rev. D 23:814 1981. [Google Scholar]
  59. Baroni G. 59.  et al. Lett. Nuovo Cim. 2:1256 1971. [Google Scholar]
  60. Semertzidis YK. 60.  J. Phys. Conf. Ser. 335:012012 2011. [Google Scholar]
  61. Purcell EM, Ramsey NF. 61.  Phys. Rev. 78:807 1950. [Google Scholar]
  62. Smith JH, Purcell EM, Ramsey NF. 62.  Phys. Rev. 108:120 1957. [Google Scholar]
  63. Schiff LI. 63.  Phys. Rev. 132:2194 1963. [Google Scholar]
  64. Sandars PGH. 64.  Phys. Lett. 14:194 1965. Sandars PGH J. Phys. B 1:499 1968. Sandars PGH J. Phys. B 1:511 1968. [Google Scholar]
  65. Commins E, Jackson JD, DeMille D. 65.  Am. J. Phys. 75:524 2007. [Google Scholar]
  66. Regan BC, Commins ED, Schmidt CJ, DeMille D. 66.  Phys. Rev. Lett. 88:071805 2002. [Google Scholar]
  67. Pendlebury JM, Hinds EA. 67.  Nucl. Instrum. Methods A 440:471 2000. [Google Scholar]
  68. Onderwater CJG. 68.  J. Phys. Conf. Ser. 295:012008 2011. [Google Scholar]
  69. Anastassopoulos V. 69.  et al. arXiv1502.04317 [physics.acc-ph] 2015.
  70. Kajita T. 70.  Adv. High Energy Phys. 2012:504715 2012. [Google Scholar]
  71. Antonelli V, Miramonti L, Peña-Garay C, Serenelli A. 71.  Adv. High Energy Phys. 2013:351926 2013. [Google Scholar]
  72. Kim SB, Lasserre T, Wang Y. 72.  Adv. High Energy Phys. 2013:453816 2013. [Google Scholar]
  73. Feldman GJ, Hartnell J, Kobayashi T. 73.  Adv. High Energy Phys. 2013:475749 2013. [Google Scholar]
  74. Pascoli S, Schwetz T. 74.  Adv. High Energy Phys. 2013:503401 2013. [Google Scholar]
  75. Bernabéu J. 75.  Nuovo Cim. C 037:145 2014. [Google Scholar]
  76. Cabibbo N. 76.  Phys. Lett. B 72:333 1978. [Google Scholar]
  77. Bernabéu J. 77.  Proceedings of the 17th International Workshop on Weak Interactions and Neutrinos CA Dominguez, RD Viollier, p. 227. Singapore: World Sci 1999. [Google Scholar]
  78. Jarlskog C. 78.  Phys. Rev. Lett. 55:1039 1985. [Google Scholar]
  79. Bernabéu J, Branco GC, Gronau M. 79.  Phys. Lett. B 169:243 1986. [Google Scholar]
  80. Diwan M. 80.  et al. Adv. High Energy Phys. 2013:460123 2013. [Google Scholar]
  81. Zucchelli P. 81.  Phys. Lett. B 532:166 2002. [Google Scholar]
  82. Bernabéu J, Burguet-Castell J, Espinoza C, Lindroos M. 82.  J. High Energy Phys. 12:014 2005. [Google Scholar]
  83. Henley EM, Johnson MB, Kisslinger LS. 83.  Int. J. Mod. Phys. E 20:2463 2011. Henley EM, Johnson MB, Kisslinger LS. Erratum. Int. J. Mod. Phys. E 21:1292001 2012. [Google Scholar]
  84. Wolfenstein L. 84.  Phys. Rev. D 17:2369 1978. [Google Scholar]
  85. Cahn RN. 85.  et al. arXiv1307.5487 [hep-ex] 2013.
  86. D'Olivo JC. 86.  Presented at 4th Symp. Prospects Phys. Discrete Symmetries (DISCRETE 2014), London 2014.
  87. Aubert B. 87.  et al. (BaBar Collab.) Nucl. Instrum. Methods A 729:615 2013. [Google Scholar]
  88. Aubert B. 88.  et al. (BaBar Collab.) Nucl. Instrum. Methods A 479:1 2002. [Google Scholar]
  89. Abashian A. 89.  et al. (Belle Collab.) Nucl. Instrum. Methods A 479:117 2002. [Google Scholar]
  90. Lipkin HJ. 90.  Phys. Lett. B 219:474 1989. [Google Scholar]
  91. Bañuls MC, Bernabéu J. 91.  J. High Energy Phys. 06:032 1999. [Google Scholar]
  92. Schubert KR, Li Gioi L, Bevan AJ, Di Domenico A. 92.  arXiv1401.6938 [hep-ex] 2014.
  93. Applebaum E. 93.  et al. Phys. Rev. D 89:076011 2014. [Google Scholar]
  94. Wolfenstein L. 94.  Phys. Rev. Lett. 51:1945 1983. [Google Scholar]
  95. Boos H, Mannel T, Reuter J. 95.  Phys. Rev. D 70:036006 2004. [Google Scholar]
  96. Li H-n, Mishima S. 96.  J. High Energy Phys. 03:009 2007. [Google Scholar]
  97. Amhis Y. 97.  et al. (HFAG Collab.) arXiv1412.7515 [hep-ex] 2014.
  98. Bigi II, Sanda AI. 98.  CP Violation Cambridge, UK: Cambridge Univ. Press 2000. [Google Scholar]
  99. Aubert B. 99.  et al. (BaBar Collab.) Phys. Rev. D 79:072009 2009. [Google Scholar]
  100. Kabir PK. 100.  Phys. Rev. D 2:540 1970. [Google Scholar]
  101. Angelopoulos A. 101.  et al. (CPLEAR Collab.) Phys. Lett. B 444:43 1998. [Google Scholar]
  102. Lees JP. 102.  et al. (BaBar Collab.) Phys. Rev. Lett. 111:101802 2013. [Google Scholar]
  103. Weisskopf V, Wigner EP. 103.  Z. Phys. 63:54 1930. [Google Scholar]
  104. Weisskopf V, Wigner EP. 104.  Z. Phys. 65:18 1930. [Google Scholar]
  105. Abazov VM. 105.  et al. (D0 Collab.) Phys. Rev. D 86:072009 2012. [Google Scholar]
  106. Lees JP. 106.  et al. (BaBar Collab.) Phys. Rev. Lett. 114:081801 2015. [Google Scholar]
  107. Aaij R. 107.  et al. (LHCb Collab.) Phys. Rev. Lett. 114:041601 2015. [Google Scholar]
  108. Nakano E. 108.  et al. (Belle Collab.) Phys. Rev. D 73:112002 2006. [Google Scholar]
  109. Álvarez-Gaumé L, Kounnas C, Lola S, Pavlopoulos P. 109.  Phys. Lett. B 458:347 1999. [Google Scholar]
  110. Ellis JR, Mavromatos NE. 110.  Phys. Rep. 320:341 1999. [Google Scholar]
  111. Gerber HJ. 111.  Eur. Phys. J. C 35:195 2004. [Google Scholar]
  112. Amelino-Camelia G. 112.  et al. Eur. Phys. J. C 68:619 2010. [Google Scholar]
  113. Bernabéu J, Di Domenico A, Villanueva-Pérez P. 113.  Nucl. Phys. B 868:102 2013. [Google Scholar]
  114. Balla A. 114.  et al. Nucl. Instrum. Methods A 732:221 2013. [Google Scholar]
  115. Gajos A. 115.  (KLOE-2 Collab.) EPJ Web Conf. 81:03004 2014. [Google Scholar]
  116. Schubert KR. 116.  Prog. Part. Nucl. Phys. 81:1 2015. [Google Scholar]
  117. Bernabéu J, Botella FJ, Nebot M. 117.  Phys. Lett. B 728:95 2014. [Google Scholar]
  118. Abe T. 118.  et al. (Belle II Collab.) arXiv1011.0352 [physics.ins-det] 2010.
  119. Aushev T. 119.  et al. arXiv1002.5012 [hep-ex] 2010.
/content/journals/10.1146/annurev-nucl-102014-022251
Loading
/content/journals/10.1146/annurev-nucl-102014-022251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error