1932

Abstract

I discuss the use of chiral effective field theory (χEFT) to describe electromagnetic reactions in the two- and three-nucleon systems. I review the results of χEFT power counting for charge and current operators up to relative to leading order, before showing that renormalization-group arguments imply that short-distance electromagnetic operators play a larger role than suggested by this standard counting. A detailed examination of χEFT's predictions for the electromagnetic form factors of deuterium and the trinucleons, and for the threshold captures γ and γ, enables a critical appraisal of the theory's performance in these contexts. Recent χEFT calculations using the chiral perturbation theory (χPT) potential yielded both form factors that agree with experimental data for 2<0.25 GeV2 and an excellent description of the challenging threshold captures. Short-distance M1 operators are essential to this success, and the addition of a short-distance part of the nucleon–nucleon charge operator produces precise predictions of the deuteron charge and quadrupole form factors in this kinematic domain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102014-022321
2016-10-19
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/nucl/66/1/annurev-nucl-102014-022321.html?itemId=/content/journals/10.1146/annurev-nucl-102014-022321&mimeType=html&fmt=ahah

Literature Cited

  1. Walecka JD. 1.  Electron Scattering for Nuclear and Nucleon Structure Cambridge, UK: Cambridge Univ. Press 2001. [Google Scholar]
  2. Riska DO, Brown GE. 2.  Phys. Lett. B 38:193 1972. [Google Scholar]
  3. Maris P, Vary JP, Navrátil P. 3.  Phys. Rev. C 87:014327 2013. [Google Scholar]
  4. Kalantar-Nayestanaki N, Epelbaum E, Messchendorp JG, Nogga A. 4.  Rep. Prog. Phys. 75:016301 2012. [Google Scholar]
  5. Hupin G. 5.  et al. Phys. Rev. C 88:054622 2013. [Google Scholar]
  6. Bedaque PF, van Kolck U. 6.  Annu. Rev. Nucl. Part. Sci. 52:339 2002. [Google Scholar]
  7. Epelbaum E, Hammer HW, Meißner U-G. 7.  Rev. Mod. Phys. 81: 1773. 2009. [Google Scholar]
  8. Phillips DR, Cohen TD. 8.  Nucl. Phys. A 668:45 2000. [Google Scholar]
  9. Park TS, Kubodera K, Min DP, Rho M. 9.  Nucl. Phys. A 646:83 1999. [Google Scholar]
  10. Pastore S, Schiavilla R, Goity J. 10.  Phys. Rev. C 78:064002 2008. [Google Scholar]
  11. Pastore S. 11.  et al. Phys. Rev. C 80:034004 2009. [Google Scholar]
  12. Pastore S, Girlanda L, Schiavilla R, Viviani M. 12.  Phys. Rev. C 84:024001 2011. [Google Scholar]
  13. Kölling S, Epelbaum E, Krebs H, Meißner U-G. 13.  Phys. Rev. C 80:045502 2009. [Google Scholar]
  14. Kölling S, Epelbaum E, Krebs H, Meißner U-G. 14.  Phys. Rev. C 84054008 2011. [Google Scholar]
  15. Piarulli M. 15.  et al. Phys. Rev. C 87:014006 2013. [Google Scholar]
  16. Pavón Valderrama M, Phillips DR. 16.  Phys. Rev. Lett. 114:082502 2015. [Google Scholar]
  17. Bacca S, Pastore S. 17.  J. Phys. G 41:123002 2014. [Google Scholar]
  18. Marcucci LE, Mangano G, Kievsky A, Viviani M. 18.  arXiv:1510.07877 [nucl-th] 2015.
  19. Bernard V, Meißner U-G. 19.  Annu. Rev. Nucl. Part. Sci. 57:33 2007. [Google Scholar]
  20. Bernard V. 20.  Prog. Part. Nucl. Phys. 60:82 2008. [Google Scholar]
  21. Scherer S, Schindler MR. 21.  Lect. Notes Phys. 830:1 2012. [Google Scholar]
  22. Ordonez C, Ray L, van Kolck U. 22.  Phys. Rev. C 53:2086 1996. [Google Scholar]
  23. Kaiser N, Gerstendorfer S, Weise W. 23.  Nucl. Phys. A 637:395 1998. [Google Scholar]
  24. Krebs H, Epelbaum E, Meißner U-G. 24.  Eur. Phys. J A 32:127 2007. [Google Scholar]
  25. Epelbaum E, Krebs H, Meißner U-G. 25.  Nucl. Phys. A 806:65 2008. [Google Scholar]
  26. Piarulli M. 26.  et al. Phys. Rev. C 91:024003 2015. [Google Scholar]
  27. Kaplan DB, Savage MJ, Wise MB. 27.  Phys. Lett. B 424:390 1998. [Google Scholar]
  28. Kaplan DB, Savage MJ, Wise MB. 28.  Nucl. Phys. B 534:329 1998. [Google Scholar]
  29. van Kolck U. 29.  Nucl. Phys. A 645:273 1999. [Google Scholar]
  30. Birse MC, McGovern JA, Richardson KG. 30.  Phys. Lett. B 464:169 1999. [Google Scholar]
  31. Chen JW, Rupak G, Savage MJ. 31.  Nucl. Phys. A 653:386 1999. [Google Scholar]
  32. Phillips DR, Rupak G, Savage MJ. 32.  Phys. Lett. B 473:209 2000. [Google Scholar]
  33. Rupak G. 33.  Nucl. Phys. A 678:405 2000. [Google Scholar]
  34. Sadeghi H, Bayegan S, Griesshammer HW. 34.  Phys. Lett. B 643:263 2006. [Google Scholar]
  35. Weinberg S. 35.  Phys. Lett. B 251:288 1990. [Google Scholar]
  36. Weinberg S. 36.  Nucl. Phys. B 363:3 1991. [Google Scholar]
  37. Epelbaum E, Glöckle W, Meißner U-G. 37.  Nucl. Phys. A 671:295 2000. [Google Scholar]
  38. Entem DR, Machleidt R. 38.  Phys. Lett. B 524:93 2002. [Google Scholar]
  39. Entem DR, Machleidt R. 39.  Phys. Rev. C 68:041001 2003. [Google Scholar]
  40. Epelbaum E, Glockle W, Meißner U-G. 40.  Nucl. Phys. A 747:362 2005. [Google Scholar]
  41. van Kolck U. 41.  Phys. Rev. C 49:2932 1994. [Google Scholar]
  42. Epelbaum E. 42.  et al. Phys. Rev. C 66:064001 2002. [Google Scholar]
  43. Birse MC. 43.  Proc. Sci. CD09:078 2010. [Google Scholar]
  44. Phillips DR. 44.  Proc. Sci. CD12:013 2013. [Google Scholar]
  45. Fleming S, Mehen T, Stewart IW. 45.  Nucl. Phys. A 677:313 2000. [Google Scholar]
  46. Beane SR, Bedaque PF, Savage MJ, van Kolck U. 46.  Nucl. Phys. A 700:377 2002. [Google Scholar]
  47. Birse MC. 47.  Phys. Rev. C 74:014003 2006. [Google Scholar]
  48. Kaiser N, Brockmann R, Weise W. 48.  Nucl. Phys. A 625:758 1997. [Google Scholar]
  49. Case KM. 49.  Phys. Rev. 80:797 1950. [Google Scholar]
  50. Sprung DWL. 50.  et al. Phys. Rev. C 49:2942 1994. [Google Scholar]
  51. Beane SR. 51.  et al. Phys. Rev. A 64:042103 2001. [Google Scholar]
  52. Pavón Valderrama M, Ruiz Arriola E. 52.  Phys. Rev. C 72:054002 2005. [Google Scholar]
  53. Yang CJ, Elster C, Phillips DR. 53.  Phys. Rev. C 77:014002 2008. [Google Scholar]
  54. Eiras D, Soto J. 54.  Eur. Phys. J. A 17:89 2003. [Google Scholar]
  55. Nogga A, Timmermans RGE, van Kolck U. 55.  Phys. Rev. C 72:054006 2005. [Google Scholar]
  56. Birse MC. 56.  Phys. Rev. C 76:034002 2007. [Google Scholar]
  57. Yang C, Elster C, Phillips DR. 57.  Phys. Rev. C 80:034002 2009. [Google Scholar]
  58. Marji E. 58.  et al. Phys. Rev. C 88:054002 2013. [Google Scholar]
  59. Furnstahl RJ, Phillips DR, Wesolowski S. 59.  J. Phys. G 42:034028 2015. [Google Scholar]
  60. Furnstahl RJ, Klco N, Phillips DR, Wesolowski S. 60.  Phys. Rev. C 92:024005 2015. [Google Scholar]
  61. Wesolowski S. 61.  et al. J. Phys. G 43:074001 2016. [Google Scholar]
  62. Griesshammer HW, McGovern JA, Phillips DR, Feldman G. 62.  Prog. Part. Nucl. Phys. 67:841 2012. [Google Scholar]
  63. Epelbaum E, Krebs H, Meißner U-G. 63.  Eur. Phys. J. A 51:53 2015. [Google Scholar]
  64. Epelbaum E, Krebs H, Meißner U-G. 64.  Phys. Rev. Lett. 115:122301 2015. [Google Scholar]
  65. Kubis B, Meißner U-G. 65.  Nucl. Phys. A 679:698 2001. [Google Scholar]
  66. Weinberg S. 66.  Phys. Lett. B 295:114 1992. [Google Scholar]
  67. Friar JL. 67.  Few Body Syst. 22:161 1997. [Google Scholar]
  68. Friar JL. 68.  Phys. Rev. C 22:796 1980. [Google Scholar]
  69. Adam J, Goller H, Arenhövel H. 69.  Phys. Rev. C 48:370 1993. [Google Scholar]
  70. Adam J Jr., Arenhövel H. 70.  Nucl. Phys. A 614:289 1997. [Google Scholar]
  71. Phillips DR. 71.  J. Phys. G 34:365 2007. [Google Scholar]
  72. Phillips DR. 72.  Phys. Lett. B 567:12 2003. [Google Scholar]
  73. Park TS, Kubodera K, Min DP, Rho M. 73.  Phys. Lett. B 472:232 2000. [Google Scholar]
  74. Gross F, Riska DO. 74.  Phys. Rev. C 36:1928 1987. [Google Scholar]
  75. Pavón Valderrama M, Nogga A, Ruiz Arriola E, Phillips DR. 75.  Eur. Phys. J A 36:315 2008. [Google Scholar]
  76. Belushkin MA, Hammer HW, Meißner U-G. 76.  Phys. Rev. C 75:035202 2007. [Google Scholar]
  77. Epelbaum E, Gasparyan AM, Gegelia J, Schindler MR. 77.  Eur. Phys. J. A 50:51 2014. [Google Scholar]
  78. Abbott D. 78.  et al. Eur. Phys. J. A 7:421 2000. [Google Scholar]
  79. Nikolenko DM. 79.  et al. Phys. Rev. Lett. 90:072501 2003. [Google Scholar]
  80. Auffret S. 80.  et al. Phys. Rev. Lett. 54:649 1985. [Google Scholar]
  81. Cramer R. 81.  et al. Z. Phys. C 29:513 1985. [Google Scholar]
  82. Simon GG, Schmidt C, Walther VH. 82.  Nucl. Phys. A 364:285 1981. [Google Scholar]
  83. Parthey CG. 83.  et al. Phys. Rev. Lett. 104:233001 2010. [Google Scholar]
  84. Friar JL, Martorell J, Sprung DWL. 84.  Phys. Rev. A 56:4579 1997. [Google Scholar]
  85. Stoks VGJ, Klomp RAM, Terheggen CPF, de Swart JJ. 85.  Phys. Rev. C 49:2950 1994. [Google Scholar]
  86. Chen J-P. 86.  et al. (Jefferson Lab. Exp. E05004) A(Q) at low Q in ed elastic scattering Experimental proposal. http://hallaweb.jlab.org/collab/PAC/PAC27/PR-05-004-lowQed.pdf 2004. [Google Scholar]
  87. Schlimme B. 87.  et al. Eur. Phys. J. Web Conf. 113:04017 2016. [Google Scholar]
  88. Zhang C. 88.  et al. Phys. Rev. Lett. 107:252501 2011. [Google Scholar]
  89. Kölling S, Epelbaum E, Phillips DR. 89.  Phys. Rev. C 86:047001 2012. [Google Scholar]
  90. Gasparyan A, Lutz MFM. 90.  Nucl. Phys. A 848:126 2010. [Google Scholar]
  91. Hilt M, Lehnhart BC, Scherer S, Tiator L. 91.  Phys. Rev. C 88:055207 2013. [Google Scholar]
  92. Yang CJ, Phillips DR. 92.  Eur. Phys. J. A 49:122 2013. [Google Scholar]
  93. More SN, König S, Furnstahl RJ, Hebeler K. 93.  Phys. Rev. C 92:064002 2015. [Google Scholar]
  94. Amroun A. 94.  et al. Nucl. Phys. A 579:596 1994. [Google Scholar]
  95. Song YH, Lazauskas R, Park TS, Min DP. 95.  Phys. Lett. B 656:174 2007. [Google Scholar]
  96. Song YH, Lazauskas R, Park TS. 96.  Phys. Rev. C 79:064002 2009. [Google Scholar]
  97. Girlanda L. 97.  et al. Phys. Rev. Lett. 105:232502 2010. [Google Scholar]
  98. Struve W, Hajduk C, Sauer PU, Theis W. 98.  Nucl. Phys. A 465:651 1987. [Google Scholar]
  99. Sick I. 99.  Prog. Part. Nucl. Phys. 47:245 2001. [Google Scholar]
  100. Antognini A. 100.  arXiv:1512.01765 [physics.atom-ph] 2015.
  101. Rozpedzik D. 101.  et al. Phys. Rev. C 83:064004 2011. [Google Scholar]
  102. Gazit D, Quaglioni S, Navrátil P. 102.  Phys. Rev. Lett. 103:102502 2009. [Google Scholar]
  103. Lazauskas R, Song YH, Park TS. 103.  Phys. Rev. C 83:034006 2011. [Google Scholar]
  104. Quaglioni S, Navrátil P. 104.  Phys. Lett. B 652:370 2007. [Google Scholar]
  105. Bacca S. 105.  et al. Phys. Rev. Lett. 111:122502 2013. [Google Scholar]
  106. Marcucci LE. 106.  et al. arXiv:1504.05063 [nucl-th] 2015.
  107. Pastore S, Pieper SC, Schiavilla R, Wiringa R. 107.  Phys. Rev. C 87:035503 2013. [Google Scholar]
  108. Weller HR. 108.  et al. Prog. Part. Nucl. Phys. 62:257 2009. [Google Scholar]
  109. Laskaris G. 109.  et al. Phys. Rev. Lett. 110:202501 2013. [Google Scholar]
  110. Laskaris G. 110.  et al. Phys. Rev. C 89:024002 2014. [Google Scholar]
  111. Dohet-Eraly J. 111.  et al. arXiv:1510.07717 [nucl-th] 2015.
  112. Beane SR. 112.  et al. Phys. Rev. Lett. 115:132001 2015. [Google Scholar]
/content/journals/10.1146/annurev-nucl-102014-022321
Loading
/content/journals/10.1146/annurev-nucl-102014-022321
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error