1932

Abstract

In this article, I review scenarios of physics beyond the Standard Model in which the top quark plays a special role. Models that aim at the stabilization of the weak scale are presented together with the specific phenomenology of partner states that are characteristic of this type of model. Further, I present models of flavor in which the top quark is singled out as a special flavor in the Standard Model. The flavor and collider phenomenology of these models is broadly presented. Finally, I discuss the possibility that dark matter interacts preferably with the top quark flavor and give an overview of the dark matter phenomenology of these scenarios, as well as collider and flavor signals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102020-011427
2023-09-25
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-102020-011427.html?itemId=/content/journals/10.1146/annurev-nucl-102020-011427&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    ’t Hooft G. NATO Adv. Study Inst. Ser. B Phys. 59:135 1980.)
    [Google Scholar]
  2. 2.
    Wess J, Bagger J. Supersymmetry and Supergravity Princeton, NJ: Princeton Univ. Press. Rev 1983.)
    [Google Scholar]
  3. 3.
    Martin SP. Perspectives on Supersymmetry GL Kane 1–98. Adv. Ser. Dir. High Energy Phys. 18 Singapore: World Sci.
    [Google Scholar]
  4. 4.
    Hall LJ, Pinner D, Ruderman JT. J. High Energy Phys. 1204:131 2012.)
    [Google Scholar]
  5. 5.
    Larsen G, Nomura Y, Roberts HLL. J. High Energy Phys. 1206:32 2012.)
    [Google Scholar]
  6. 6.
    Brümmer F, Kraml S, Kulkarni S. J. High Energy Phys. 1208:89 2012.)
    [Google Scholar]
  7. 7.
    Craig N, McCullough M, Thaler J. J. High Energy Phys 1206:46 2012.)
    [Google Scholar]
  8. 8.
    Craig N, McCullough M, Thaler J. J. High Energy Phys 1203:49 2012.)
    [Google Scholar]
  9. 9.
    Auzzi R, Giveon A, Gudnason SB. J. High Energy Phys. 1202:69 2012.)
    [Google Scholar]
  10. 10.
    Craig N, Dimopoulos S, Gherghetta T. J. High Energy Phys. 1204:116 2012.)
    [Google Scholar]
  11. 11.
    Blanke M et al. J. High Energy Phys. 1306:22 2013.)
    [Google Scholar]
  12. 12.
    Feng JL. SciPost Phys. Lect. Notes. https://doi.org/10.21468/SciPostPhysLectNotes.71 2023.)
    [Google Scholar]
  13. 13.
    Aprile EEA. Phys. Rev. Lett. 121:111302 2018.)
    [Google Scholar]
  14. 14.
    Craig N. arXiv:1309.0528 [hep-ph] 2013.)
  15. 15.
    Feng JL. Annu. Rev. Nucl. Part. Sci. 63:351 2013.)
    [Google Scholar]
  16. 16.
    Fairbairn M et al. Phys. Rep. 438:1 2007.)
    [Google Scholar]
  17. 17.
    Sarid U, Thomas S. Phys. Rev. Lett. 85:1178 2000.)
    [Google Scholar]
  18. 18.
    Aaboud M et al.(ATLAS Collab.) Phys. Lett. B 760:647 2016.)
    [Google Scholar]
  19. 19.
    Aad G et al.(ATLAS Collab.) Phys. Rev. D 101:052013 2020.)
    [Google Scholar]
  20. 20.
    Kraan AC, Hansen JB, Nevski P. Eur. Phys. J. C 49:623 2007.)
    [Google Scholar]
  21. 21.
    Barbier R et al. Phys. Rep. 420:1 2005.)
    [Google Scholar]
  22. 22.
    Takayama F, Yamaguchi M. Phys. Lett. B 485:388 2000.)
    [Google Scholar]
  23. 23.
    Franceschini R. Adv. High Energy Phys. 581038:16 2015.)
    [Google Scholar]
  24. 24.
    Gabbiani F, Gabrielli E, Masiero A, Silvestrini L. Nucl. Phys. B 477:321 1996.)
    [Google Scholar]
  25. 25.
    Kraml S, Laa U, Panizzi L, Prager H. arXiv:1607.02050 [ hep-ph] 2016.)
  26. 26.
    CMS Collab. J. Phys. G 34:995 2007.)
    [Google Scholar]
  27. 27.
    ATLAS Collab Report CERN-LHCC-99-15/ATLAS-TDR-15 CERN Geneva: 1999.)
  28. 28.
    Aad G et al.(ATLAS Collab.) J. High Energy Phys. 1510:134 2015.)
    [Google Scholar]
  29. 29.
    Godbole RM, Mendiratta G, Rindani S. Phys. Rev. D 92:094013 2015.)
    [Google Scholar]
  30. 30.
    Czakon M et al. Phys. Rev. Lett. 113:201803 2014.)
    [Google Scholar]
  31. 31.
    Han Z, Katz A, Krohn D, Reece M. J. High Energy Phys 1208:83 2012.)
    [Google Scholar]
  32. 32.
    Martini T, Schulze M. arXiv:1911.11244v1 [hep-ph] 2020.)
  33. 33.
    Englert C, Galler P, White CD. Phys. Rev. D 101:035035 2020.)
    [Google Scholar]
  34. 34.
    Aad G et al.(ATLAS Collab.) Phys. Rev. D 103:112006 2021.)
    [Google Scholar]
  35. 35.
    Aad G et al.(ATLAS Collab.) Eur. Phys. J. C 80:737 2020.)
    [Google Scholar]
  36. 36.
    Aad G et al.(ATLAS Collab.) J. High Energy Phys. 2104:174 2021.)
    [Google Scholar]
  37. 37.
    Aad G et al.(ATLAS Collab.) J. High Energy Phys. 2104:165 2021.)
    [Google Scholar]
  38. 38.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1712:85 2017.)
    [Google Scholar]
  39. 39.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1806:108 2018.)
    [Google Scholar]
  40. 40.
    Aaboud M et al.(ATLAS Collab.) Eur. Phys. J. C 77:898 2017.)
    [Google Scholar]
  41. 41.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1801:126 2018.)
    [Google Scholar]
  42. 42.
    Aaboud M et al.(ATLAS Collab.) Eur. Phys. J. C. 80:754 2020.)
    [Google Scholar]
  43. 43.
    Aad G et al.(ATLAS Collab.) Eur. Phys. J. C 75:510 2015.)
    [Google Scholar]
  44. 44.
    ATLAS Collab SUSY March 2023 summary plot update. CERN https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-005/ 2023.)
    [Google Scholar]
  45. 45.
    Tumasyan A et al. (CMS Collab.) Phys. Rev. D 104:092013 2021.)
    [Google Scholar]
  46. 46.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1711:191 2017.)
    [Google Scholar]
  47. 47.
    Jezo T et al. Eur. Phys. J. C 76:691 2016.)
    [Google Scholar]
  48. 48.
    Behring A et al. Phys. Rev. Lett. 123:082001 2019.)
    [Google Scholar]
  49. 49.
    Bernreuther W, Heisler D, Si Z-G J. High Energy Phys. 1512:26 2015.)
    [Google Scholar]
  50. 50.
    Caola F, Dreyer FA, McDonald RW, Salam GP. J. High Energy Phys. 2107:40 2021.)
    [Google Scholar]
  51. 51.
    Hermann J, Worek M. arXiv:2108.01089v1 [hep-ph] 2021.)
  52. 52.
    Bevilacqua G et al. Phys. Rev. D 105:014018 2022.)
    [Google Scholar]
  53. 53.
    Kribs GD, Martin A, Roy TS. Phys. Rev. D 84:095024 2011.)
    [Google Scholar]
  54. 54.
    Abada A et al.(FCC Collab.) Eur. Phys. J. C 79:474 2019.)
    [Google Scholar]
  55. 55.
    Benedikt M et al. Technical Report CERN-ACC-2019-0005 CERN Geneva: 2019.)
  56. 56.
    Black KM et al. arXiv:2209.01318 [hep-ph] 2022.)
  57. 57.
    De Blas J et al. arXiv:2203.07261v1 [hep-ph] 2022.)
  58. 58.
    Jindariani S et al. arXiv:2203.07224v1 [physics.ins-det] 2022.)
  59. 59.
    Bartosik N et al. arXiv:2203.07964v1 [hep-ex] 2022.)
  60. 60.
    Stratakis D et al. arXiv:2203.08033v1 [physics.acc-ph] 2022.)
  61. 61.
    Panico G, Wulzer A. The Composite Nambu–Goldstone Higgs Heidelberg, Ger.: Springer 2015.)
    [Google Scholar]
  62. 62.
    Perelstein M. Pramana 67:813 2006.)
    [Google Scholar]
  63. 63.
    Perelstein M. Prog. Part. Nucl. Phys. 58:247 2007.)
    [Google Scholar]
  64. 64.
    Contino R. arXiv:1005.4269v1 [hep-ph] 2010.)
  65. 65.
    Agashe K, Contino R, Pomarol A. Nucl. Phys. B 719:165 2005.)
    [Google Scholar]
  66. 66.
    Agashe K, Contino R, Da Rold L, Pomarol A. Phys. Lett. B 641:62 2006.)
    [Google Scholar]
  67. 67.
    De Simone A, Matsedonskyi O, Rattazzi R, Wulzer A. J. High Energy Phys 1304:4 2013.)
    [Google Scholar]
  68. 68.
    Buchkremer M, Cacciapaglia G, Deandrea A, Panizzi L. Nucl. Phys. B 876:376 2013.)
    [Google Scholar]
  69. 69.
    Perelstein M, Peskin ME, Pierce A. Phys. Rev. D 69:075002 2004.)
    [Google Scholar]
  70. 70.
    Kearney J, Pierce A, Thaler J. J. High Energy Phys 1310:230 2013.)
    [Google Scholar]
  71. 71.
    Serra J. J. High Energy Phys. 1509:176 2015.)
    [Google Scholar]
  72. 72.
    Cacciapaglia G, Flacke T, Park M, Zhang M. Phys. Lett. B 798:135015 2019.)
    [Google Scholar]
  73. 73.
    Contino R, Servant G. J. High Energy Phys 0808:026 2008.)
    [Google Scholar]
  74. 74.
    Kearney J, Pierce A, Thaler J. J. High Energy Phys 1308:130 2013.)
    [Google Scholar]
  75. 75.
    Mrazek J, Wulzer A. Phys. Rev. D 81:075006 2010.)
    [Google Scholar]
  76. 76.
    Matsedonskyi O, Panico G, Wulzer A. J. High Energy Phys 1604:3 2016.)
    [Google Scholar]
  77. 77.
    Aaboud M et al.(ATLAS Collab.) Phys. Rev. D 98:092005 2018.)
    [Google Scholar]
  78. 78.
    Maksimović P. Annu. Rev. Nucl. Part. Sci. 72:447 2022.)
    [Google Scholar]
  79. 79.
    Aad G et al.(ATLAS Collab.) Phys. Lett. B 843:138019 2023.)
    [Google Scholar]
  80. 80.
    Sirunyan AM et al.(CMS Collab.) J. High Energy Phys. 1903:82 2019.)
    [Google Scholar]
  81. 81.
    ATLAS Collab ATLAS Note ATLAS-CONF-2021-040 CERN Geneva: 2021.)
  82. 82.
    Aaboud M et al.(ATLAS Collab.) Phys. Rev. Lett. 121:211801 2018.)
    [Google Scholar]
  83. 83.
    ATLAS Collab Additional plots of the ATLAS Exotic physics group. ATLAS https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/(2023)
    [Google Scholar]
  84. 84.
    Aguilar–Saavedra JA J. High Energy Phys. 0911:030 2009.)
    [Google Scholar]
  85. 85.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1710:141 2017.)
    [Google Scholar]
  86. 86.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1807:89 2018.)
    [Google Scholar]
  87. 87.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1708:52 2017.)
    [Google Scholar]
  88. 88.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1812:39 2018.)
    [Google Scholar]
  89. 89.
    Aaboud M et al.(ATLAS Collab.) Phys. Rev. D 98:112010 2018.)
    [Google Scholar]
  90. 90.
    Gripaios B, Pomarol A, Riva F, Serra J. J. High Energy Phys 0904:070 2009.)
    [Google Scholar]
  91. 91.
    Banerjee S, Chala M, Spannowsky M. Eur. Phys. J. C 78:683 2018.)
    [Google Scholar]
  92. 92.
    Kim JH et al. Phys. Rev. D 101:035041 2020.)
    [Google Scholar]
  93. 93.
    Kim JH, Lewis IM. J. High Energy Phys. 1805:95 2018.)
    [Google Scholar]
  94. 94.
    Bizot N, Cacciapaglia G, Flacke T. J. High Energy Phys 1806:65 2018.)
    [Google Scholar]
  95. 95.
    Grzadkowski B, Iskrzynski M, Misiak M, Rosiek J. J. High Energy Phys 1010:85 2010.)
    [Google Scholar]
  96. 96.
    Maltoni F, Mantani L, Mimasu K. J. High Energy Phys 1910:4 2019.)
    [Google Scholar]
  97. 97.
    Banelli G et al. arXiv:2010.05915v1 [hep-ph] 2020.)
  98. 98.
    Farina M, Mondino C, Pappadopulo D, Ruderman JT. J. High Energy Phys. 1901:231 2019.)
    [Google Scholar]
  99. 99.
    Pomarol A, Serra J. Phys. Rev. D 78:074026 2008.)
    [Google Scholar]
  100. 100.
    Lillie B, Shu J, Tait TMP. J. High Energy Phys. 0804:87 2008.)
    [Google Scholar]
  101. 101.
    Aoude R, El Faham H, Maltoni F, Vryonidou E. J. High Energy Phys 2210:163 2022.)
    [Google Scholar]
  102. 102.
    Miralles V et al. J. High Energy Phys. 2202:32 2022.)
    [Google Scholar]
  103. 103.
    Hartland NP et al. J. High Energy Phys. 1904:100 2019.)
    [Google Scholar]
  104. 104.
    Brivio I et al. J. High Energy Phys. 2002:131 2020.)
    [Google Scholar]
  105. 105.
    Buckley A et al. Phys. Rev. D 92:091501 2015.)
    [Google Scholar]
  106. 106.
    Buckley A et al.(TopFitter Collab.) J. High Energy Phys. 1604:15 2016.)
    [Google Scholar]
  107. 107.
    Ethier JJ et al. arXiv:2105.00006v1 [hep-ph] 2021.)
  108. 108.
    Ellis J et al. J. High Energy Phys. 2104:279 2021.)
    [Google Scholar]
  109. 109.
    Durieux G, Maltoni F, Zhang C. Phys. Rev. D 91:074017 2015.)
    [Google Scholar]
  110. 110.
    Chala M, Santiago J, Spannowsky M. J. High Energy Phys. 1904:14 2019.)
    [Google Scholar]
  111. 111.
    Kamenik JF, Katz A, Stolarski D. J. High Energy Phys. 1901:32 2019.)
    [Google Scholar]
  112. 112.
    Sirunyan AM et al.(CMS Collab.) J. High Energy Phys. 2103:95 2021.)
    [Google Scholar]
  113. 113.
    Yates BR.(CMS Collab.) arXiv:2101.10828 [hep-ex] 2021.)
  114. 114.
    Gottardo CA.(ATLAS Collab.) arXiv:1809.09048v1 [hep-ex] 2018.)
  115. 115.
    Ježo T, Kraus M. Phys. Rev. D 105:114024 2022.)
    [Google Scholar]
  116. 116.
    Broggio A et al. J. High Energy Phys. 1908:39 2019.)
    [Google Scholar]
  117. 117.
    Bevilacqua G et al. J. High Energy Phys. 2208:60 2022.)
    [Google Scholar]
  118. 118.
    Bevilacqua G et al. J. High Energy Phys. 1810:158 2018.)
    [Google Scholar]
  119. 119.
    Catani S et al. arXiv:2210.07846 [hep-ph] 2022.)
  120. 120.
    de Blas J et al. arXiv:2206.08326 [hep-ph] 2022.)
  121. 121.
    Durieux G et al. arXiv:2205.02140 [hep-ph] 2022.)
  122. 122.
    Durieux G et al. J. High Energy Phys. 1912:98 2019.)
    [Google Scholar]
  123. 123.
    Durieux G, Matsedonskyi O. J. High Energy Phys. 1901:72 2019.)
    [Google Scholar]
  124. 124.
    D'Ambrosio G, Giudice GF, Isidori G, Strumia A Nucl. Phys. B 645:155 2002.)
    [Google Scholar]
  125. 125.
    Buras AJ et al. Phys. Lett. B 500:161 2001.)
    [Google Scholar]
  126. 126.
    Buras AJ. Acta Phys. Pol. B 34:5615 2003.)
    [Google Scholar]
  127. 127.
    Grinstein B, Kagan AL, Trott M, Zupan J. J. High Energy Phys 1110:72 2011.)
    [Google Scholar]
  128. 128.
    Aaltonen T et al.(CDF Collab.) Phys. Rev. D 83:112003 2011.)
    [Google Scholar]
  129. 129.
    Abazov VM et al.(D0 Collab.) Phys. Rev. D 84:112005 2011.)
    [Google Scholar]
  130. 130.
    Aaltonen T et al.(CDF Collab.) arXiv:1211.1003 [hep-ph] 2012.)
  131. 131.
    Grinstein B, Redi M, Villadoro G. J. High Energy Phys 1011:67 2010.)
    [Google Scholar]
  132. 132.
    Berezhiani Z. Phys. Lett. B 129:99 1983.)
    [Google Scholar]
  133. 133.
    Krnjaic G, Stolarski D. J. High Energy Phys. 1304:64 2013.)
    [Google Scholar]
  134. 134.
    Franceschini R, Mohapatra RN. J. High Energy Phys. 1304:98 2013.)
    [Google Scholar]
  135. 135.
    Franceschini R, Torre R. Eur. Phys. J. C 73:2422 2013.)
    [Google Scholar]
  136. 136.
    Panico G, Pomarol A. J. High Energy Phys 1607:97 2016.)
    [Google Scholar]
  137. 137.
    Vecchi L. Phys. Lett. B 727:130 2013.)
    [Google Scholar]
  138. 138.
    Cacciapaglia G et al. J. High Energy Phys. 1506:85 2015.)
    [Google Scholar]
  139. 139.
    Matsedonskyi O. J. High Energy Phys. 1502:154 2015.)
    [Google Scholar]
  140. 140.
    Redi M. Eur. Phys. J. C 72:2030 2012.)
    [Google Scholar]
  141. 141.
    Redi M, Weiler A. J. High Energy Phys 1111:108 2011.)
    [Google Scholar]
  142. 142.
    Delaunay C et al. J. High Energy Phys. 1402:55 2014.)
    [Google Scholar]
  143. 143.
    Keren-Zur B et al. Nucl. Phys. B 867:394 2013.)
    [Google Scholar]
  144. 144.
    Domènech O, Pomarol A, Serra J. Phys. Rev. D 85:074030 2012.)
    [Google Scholar]
  145. 145.
    Redi M, Sanz V, de Vries M, Weiler A. J. High Energy Phys 1308:8 2013.)
    [Google Scholar]
  146. 146.
    Panico G, Riembau M, Vantalon T. J. High Energy Phys 1806:56 2018.)
    [Google Scholar]
  147. 147.
    Agashe K, Perez G, Soni A. Phys. Rev. D 75:015002 2007.)
    [Google Scholar]
  148. 148.
    Agashe K, Perez G, Soni A. Phys. Rev. D 71:016002 2005.)
    [Google Scholar]
  149. 149.
    Balaji S. Phys. Rev. D 102:113010 2020.)
    [Google Scholar]
  150. 150.
    Balaji S. J. High Energy Phys. 2205:15 2022.)
    [Google Scholar]
  151. 151.
    Grojean C, Matsedonskyi O, Panico G. J. High Energy Phys 1310:160 2013.)
    [Google Scholar]
  152. 152.
    del Aguila F, Santiago J, Pérez-Victoria M. J. High Energy Phys. 0009:011 2000.)
    [Google Scholar]
  153. 153.
    Aguilar-Saavedra JA, Pérez-Victoria M. J. Phys. Conf. Ser. 452:012037 2013.)
    [Google Scholar]
  154. 154.
    Batell B, Pradler J, Spannowsky M. J. High Energy Phys. 1108:38 2011.)
    [Google Scholar]
  155. 155.
    Kile J. Mod. Phys. Lett. A 28:1330031 2013.)
    [Google Scholar]
  156. 156.
    Agrawal P, Blanke M, Gemmler K. J. High Energy Phys. 1410:72 2014.)
    [Google Scholar]
  157. 157.
    Kumar A, Tulin S. Phys. Rev. D 87:095006 2013.)
    [Google Scholar]
  158. 158.
    Kile J, Soni A. Phys. Rev. D 84:035016 2011.)
    [Google Scholar]
  159. 159.
    Kamenik JF, Zupan J. Phys. Rev. D 84:111502 2011.)
    [Google Scholar]
  160. 160.
    Agrawal P, Chacko Z, Blanchet S, Kilic C. Phys. Rev. D 86:055002 2012.)
    [Google Scholar]
  161. 161.
    Lopez-Honorez L, Merlo L. Phys. Lett. B 722:135 2013.)
    [Google Scholar]
  162. 162.
    Kilic C, Klimek MD, Yu J-H. Phys. Rev. D 91:054036 2015.)
    [Google Scholar]
  163. 163.
    Garny M, Heisig J, Hufnagel M, Lülf B. Phys. Rev. D 97:075002 2018.)
    [Google Scholar]
  164. 164.
    Aalbers J et al. J. Phys. G 50:013001 2023.)
    [Google Scholar]
  165. 165.
    Blanke M, Kast S. J. High Energy Phys. 1705:162 2017.)
    [Google Scholar]
  166. 166.
    Blanke M, Pani P, Polesello G, Rovelli G. J. High Energy Phys 2101:194 2021.)
    [Google Scholar]
  167. 167.
    Andrea J, Fuks B, Maltoni F. Phys. Rev. D 84:074025 2011.)
    [Google Scholar]
  168. 168.
    D'Hondt J et al. J. High Energy Phys. 1603:60 2016.)
    [Google Scholar]
  169. 169.
    Colucci S et al. Phys. Rev. D 98:035002 2018.)
    [Google Scholar]
  170. 170.
    Baek S, Ko P, Wu P. J. Cosmol. Astropart. Phys. 1807:008 2018.)
    [Google Scholar]
  171. 171.
    Gómez MA, Jackson CB, Shaughnessy G. J. Cosmol. Astropart. Phys. 1412:025 2014.)
    [Google Scholar]
  172. 172.
    Cheung K et al. J. High Energy Phys. 1010:81 2010.)
    [Google Scholar]
  173. 173.
    Arkani-Hamed N et al. arXiv:1212.6971v1 [hep-ph] 2012.)
  174. 174.
    Bally A, Chung Y, Goertz F. arXiv:2211.17254 [hep-ph] 2022.)
  175. 175.
    Kim HD, D'agnolo R Talk presented at the GGI Workshop Florence, Italy: Aug. 23. https://www.ggi.infn.it/talkfiles/slides/slides4245.pdf 2018.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102020-011427
Loading
/content/journals/10.1146/annurev-nucl-102020-011427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error