1932

Abstract

We present a method for ordering two-nucleon interactions based upon their scaling with the number of QCD colors, , in the limit that becomes large. Available data in the two-nucleon sector show general agreement with this ordering, indicating that the method may be useful in other contexts where data are less readily available. However, several caveats and potential pitfalls can make the large- ordering fragile and/or vulnerable to misinterpretation. We discuss the application of the large- analysis to two- and three-nucleon interactions, including those originating from weak and BSM (beyond the Standard Model) interactions, as well as two-nucleon external currents. Finally, we discuss some open questions in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102020-014052
2023-09-25
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-102020-014052.html?itemId=/content/journals/10.1146/annurev-nucl-102020-014052&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    ’t Hooft G. Nucl. Phys. B 72:461 1974.)
    [Google Scholar]
  2. 2.
    Witten E. Nucl. Phys. B 160:57 1979.)
    [Google Scholar]
  3. 3.
    Coleman S. Aspects of Symmetry: Selected Erice Lectures Cambridge, UK: Cambridge Univ. Press 1985.)
    [Google Scholar]
  4. 4.
    Manohar AV. 1998. Probing the Standard Model of Particle Interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th Session, Les Houches, France, July 28–September 5, 19971091169. Amsterdam: North Holland
    [Google Scholar]
  5. 5.
    Jenkins EE. Annu. Rev. Nucl. Part. Sci. 48:81 1998.)
    [Google Scholar]
  6. 6.
    Lebed RF Czech. J. Phys. 49:1273 1999.)
    [Google Scholar]
  7. 7.
    Cohen TD, Gelman BA. Phys. Lett. B 540:227 2002.)
    [Google Scholar]
  8. 8.
    Cohen TD, Gelman BA. Phys. Rev. C 85:024001 2012.)
    [Google Scholar]
  9. 9.
    Cohen TD, Krejčiřík V. Phys. Rev. C 88:5054003 2013.)
    [Google Scholar]
  10. 10.
    Wiringa RB, Stoks V, Schiavilla R. Phys. Rev. C 51:38 1995.)
    [Google Scholar]
  11. 11.
    Machleidt R. Phys. Rev. C 63:024001 2001.)
    [Google Scholar]
  12. 12.
    Kaplan DB, Manohar AV. Phys. Rev. C 56:76 1997.)
    [Google Scholar]
  13. 13.
    Epelbaum E, Hammer H-W, Meißner U-G. Rev. Mod. Phys. 81:1773 2009.)
    [Google Scholar]
  14. 14.
    Machleidt R, Entem D. Phys. Rep. 503:1 2011.)
    [Google Scholar]
  15. 15.
    Hammer H-W, König S, van Kolck U. Rev. Mod. Phys. 92:2025004 2020.)
    [Google Scholar]
  16. 16.
    Epelbaum E, Krebs H, Reinert P. Front. Phys. 8:98 2020.)
    [Google Scholar]
  17. 17.
    Lucini B, Panero M. Phys. Rep. 526:93 2013.)
    [Google Scholar]
  18. 18.
    Lucini B, Panero M. Prog. Part. Nucl. Phys. 75:1 2014.)
    [Google Scholar]
  19. 19.
    Davoudi Z et al. Phys. Rep. 900:1 2021.)
    [Google Scholar]
  20. 20.
    Gervais J-L, Sakita B. Phys. Rev. Lett. 52:87 1984.)
    [Google Scholar]
  21. 21.
    Gervais J-L, Sakita B. Phys. Rev. D 30:1795 1984.)
    [Google Scholar]
  22. 22.
    Dashen RF, Manohar AV. Phys. Lett. B 315:438 1993.)
    [Google Scholar]
  23. 23.
    Dashen RF, Manohar AV. Phys. Lett. B 315:425 1993.)
    [Google Scholar]
  24. 24.
    Dashen RF, Jenkins EE, Manohar AV. Phys. Rev. D 49:4713 1994. Erratum. Phys. Rev. D 51:2489 1995.)
    [Google Scholar]
  25. 25.
    Dashen RF, Jenkins EE, Manohar AV. Phys. Rev. D 51:3697 1995.)
    [Google Scholar]
  26. 26.
    Carone C, Georgi H, Osofsky S. Phys. Lett. B 322:227 1994.)
    [Google Scholar]
  27. 27.
    Luty MA, March-Russell J. Nucl. Phys. B 426:71 1994.)
    [Google Scholar]
  28. 28.
    Phillips DR, Schat C. Phys. Rev. C 88:3034002 2013.)
    [Google Scholar]
  29. 29.
    Kaplan DB, Savage MJ. Phys. Lett. B 365:244 1996.)
    [Google Scholar]
  30. 30.
    Schindler MR, Springer RP, Vanasse J. Phys. Rev. C 93:2025502 2016. Erratum. Phys. Rev. C 97:5059901 2018.)
    [Google Scholar]
  31. 31.
    Girlanda L. Progress in the quest for a realistic 3N force. Talk presented at the 8th International Workshop on Chiral Dynamics Pisa, Italy: June 29–July 3 2015.)
    [Google Scholar]
  32. 32.
    Beane SR. Proceedings from the Institute for Nuclear Theory, Volume 12 Phenomenology of Large Nc QCD199208. Singapore: World Scientific 2002.)
    [Google Scholar]
  33. 33.
    Jenkins EE, Manohar AV. Effective Field Theories of the Standard Model: Proceedings of the Workshop11337. Singapore: World Scientific 1991.)
    [Google Scholar]
  34. 34.
    Cohen TD. Rev. Mod. Phys. 68:599 1996.)
    [Google Scholar]
  35. 35.
    Kaplan DB, Savage MJ, Wise MB. Phys. Lett. B 424:390 1998.)
    [Google Scholar]
  36. 36.
    Schindler MR, Singh H, Springer RP. Phys. Rev. C 98:4044001 2018.)
    [Google Scholar]
  37. 37.
    Beane SR et al. Phys. Rev. C 88:2024003 2013.)
    [Google Scholar]
  38. 38.
    Hörz B et al. Phys. Rev. C 103:1014003 2021.)
    [Google Scholar]
  39. 39.
    Detmold W, Shanahan PE. Phys. Rev. D 103:7074503 2021.)
    [Google Scholar]
  40. 40.
    Savage MJ, Wise MB. Phys. Rev. D 53:349 1996.)
    [Google Scholar]
  41. 41.
    Wagman ML et al. Phys. Rev. D 96:11114510 2017.)
    [Google Scholar]
  42. 42.
    Illa M et al. Phys. Rev. D 103:5054508 2021.)
    [Google Scholar]
  43. 43.
    Beane SR, Kaplan DB, Klco N, Savage MJ. Phys. Rev. Lett. 122:10102001 2019.)
    [Google Scholar]
  44. 44.
    Low I, Mehen T. Phys. Rev. D 104:074014 2021.)
    [Google Scholar]
  45. 45.
    Liu Q, Low I, Mehen T. Phys. Rev. C 107:025204 2023.)
    [Google Scholar]
  46. 46.
    Richardson TR, Schindler MR. Phys. Rev. C 101:5055505 2020.)
    [Google Scholar]
  47. 47.
    Nagels MM, Rijken TA, de Swart JJ. Phys. Rev. D 17:768 1978.)
    [Google Scholar]
  48. 48.
    Stoks V, Klomp R, Terheggen C, de Swart J. Phys. Rev. C 49:2950 1994.)
    [Google Scholar]
  49. 49.
    Riska DO. Nucl. Phys. A 710:55 2002.)
    [Google Scholar]
  50. 50.
    Lacombe M et al. Phys. Rev. C 21:861 1980.)
    [Google Scholar]
  51. 51.
    Banerjee MK, Cohen TD, Gelman BA. Phys. Rev. C 65:034011 2002.)
    [Google Scholar]
  52. 52.
    Belitsky AV, Cohen TD. Phys. Rev. C 65:064008 2002.)
    [Google Scholar]
  53. 53.
    Cohen TD. Phys. Rev. C 66:064003 2002.)
    [Google Scholar]
  54. 54.
    Wigner E. Phys. Rev. 51:106 1937.)
    [Google Scholar]
  55. 55.
    Wigner EP. Phys. Rev. 56:519 1939.)
    [Google Scholar]
  56. 56.
    Calle Cordon A, Ruiz Arriola E. Phys. Rev. C 78:054002 2008.)
    [Google Scholar]
  57. 57.
    Timoteo VS, Szpigel S, Ruiz Arriola E. Phys. Rev. C 86:034002 2012.)
    [Google Scholar]
  58. 58.
    Calle Cordon A, Ruiz Arriola E. Phys. Rev. C 80:014002 2009.)
    [Google Scholar]
  59. 59.
    Lee D et al. Phys. Rev. Lett. 127:6062501 2021.)
    [Google Scholar]
  60. 60.
    Gross F, Cohen TD, Epelbaum E, Machleidt R. Few Body Syst. 50:31 2011.)
    [Google Scholar]
  61. 61.
    Chen GY. Commun. Theor. Phys. 70:6683 2018.)
    [Google Scholar]
  62. 62.
    Haxton WC, Holstein BR. Prog. Part. Nucl. Phys. 71:185 2013.)
    [Google Scholar]
  63. 63.
    Schindler MR, Springer RP. Prog. Part. Nucl. Phys. 72:1 2013.)
    [Google Scholar]
  64. 64.
    Bowman C, Bowman J, Yuan V. Phys. Rev. C 39:1721 1989.)
    [Google Scholar]
  65. 65.
    Wasem J. Phys. Rev. C 85:022501 2012.)
    [Google Scholar]
  66. 66.
    Kurth T et al. Proc. Sci. LATTICE2015 329 2016.)
    [Google Scholar]
  67. 67.
    Phillips DR, Samart D, Schat C. Phys. Rev. Lett. 114:6062301 2015.)
    [Google Scholar]
  68. 68.
    Workman RL et al. PTEP 2022:083C01 2022.)
    [Google Scholar]
  69. 69.
    Dai J, Savage MJ, Liu J, Springer RP. Phys. Lett. B 271:403 1991.)
    [Google Scholar]
  70. 70.
    Tiburzi B. Phys. Rev. D 85:054020 2012.)
    [Google Scholar]
  71. 71.
    Tiburzi B. Phys. Rev. D 86:097501 2012.)
    [Google Scholar]
  72. 72.
    Gardner S, Muralidhara G. Phys. Lett. B 833:137372 2022.)
    [Google Scholar]
  73. 73.
    Gardner S, Muralidhara G. Phys. Rev. C 107:055501 2023.)
    [Google Scholar]
  74. 74.
    Desplanques B, Donoghue JF, Holstein BR. Ann. Phys. 124:449 1980.)
    [Google Scholar]
  75. 75.
    Zhu SL. Phys. Rev. D 79:116002 2009.)
    [Google Scholar]
  76. 76.
    Zhu SL et al. Nucl. Phys. A 748:435 2005.)
    [Google Scholar]
  77. 77.
    Girlanda L. Phys. Rev. C 77:067001 2008.)
    [Google Scholar]
  78. 78.
    Phillips DR, Schindler MR, Springer RP. Nucl. Phys. A 822:1 2009.)
    [Google Scholar]
  79. 79.
    Schindler MR, Springer RP. Nucl. Phys. A 846:51 2010.)
    [Google Scholar]
  80. 80.
    Danilov G. Phys. Lett. 18:140 1965.)
    [Google Scholar]
  81. 81.
    Danilov G. Phys. Lett. B 35:579 1971.)
    [Google Scholar]
  82. 82.
    Nguyen ST, Schindler MR, Springer RP, Vanasse J. Phys. Rev. C 103:5054004 2021.)
    [Google Scholar]
  83. 83.
    Adelberger EG, Haxton WC. Annu. Rev. Nucl. Part. Sci. 35:501 1985.)
    [Google Scholar]
  84. 84.
    Gardner S, Haxton WC, Holstein BR. Annu. Rev. Nucl. Part. Sci. 67:69 2017.)
    [Google Scholar]
  85. 85.
    Eversheim PD et al. Phys. Lett. B 256:11 1991.)
    [Google Scholar]
  86. 86.
    Haeberli W, Holstein BR. Symmetries and Fundamental Interactions in Nuclei WC Haxton, EM Henley 1766. Singapore: World Scientific 1995.)
    [Google Scholar]
  87. 87.
    Knyazkov VA et al. JETP Lett. 38:163 1983.)
    [Google Scholar]
  88. 88.
    Knyaz'kov VA et al. Nucl. Phys. A 417:209 1984.)
    [Google Scholar]
  89. 89.
    Blyth D et al. Phys. Rev. Lett. 121:24242002 2018.)
    [Google Scholar]
  90. 90.
    Savage MJ. Nucl. Phys. A 695:365 2001.)
    [Google Scholar]
  91. 91.
    Vanasse J. Phys. Rev. C 99:5054001 2019.)
    [Google Scholar]
  92. 92.
    Haxton W. Large Nc HPNC analyses post NPDGamma Talk presented at the Thirteenth Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2018) Palm Springs, CA: May 29–June 3 2018.)
    [Google Scholar]
  93. 93.
    Gericke MT et al. Phys. Rev. Lett. 125:13131803 2020.)
    [Google Scholar]
  94. 94.
    Barnes CA et al. Phys. Rev. Lett. 40:840 1978.)
    [Google Scholar]
  95. 95.
    Ahrens G et al. Nucl. Phys. A 390:486 1982.)
    [Google Scholar]
  96. 96.
    Bini M, Fazzini TF, Poggi G, Taccetti N. Phys. Rev. Lett. 55:795 1985.)
    [Google Scholar]
  97. 97.
    Page SA et al. Phys. Rev. C 35:1119 1987.)
    [Google Scholar]
  98. 98.
    Herczeg P. Nucl. Phys. 75:3655 1966.)
    [Google Scholar]
  99. 99.
    Simonius M. Phys. Lett. B 58:147 1975.)
    [Google Scholar]
  100. 100.
    Haxton WC, Henley EM. Phys. Rev. Lett. 51:1937 1983.)
    [Google Scholar]
  101. 101.
    Gudkov VP, He XG, McKellar BHJ. Phys. Rev. C 47:2365 1993.)
    [Google Scholar]
  102. 102.
    Towner IS, Hayes AC. Phys. Rev. C 49:2391 1994.)
    [Google Scholar]
  103. 103.
    Liu CP, Timmermans RGE. Phys. Rev. C 70:055501 2004.)
    [Google Scholar]
  104. 104.
    Mereghetti E, Hockings WH, van Kolck U. Ann. Phys. 325:2363 2010.)
    [Google Scholar]
  105. 105.
    Maekawa C, Mereghetti E, de Vries J, van Kolck U. Nucl. Phys. A 872:117 2011.)
    [Google Scholar]
  106. 106.
    de Vries J, Mereghetti E, Timmermans RGE, van Kolck U. Ann. Phys. 338:50 2013.)
    [Google Scholar]
  107. 107.
    Bsaisou J et al. Eur. Phys. J. A 49:31 2013.)
    [Google Scholar]
  108. 108.
    Bsaisou J et al. J. High Energy Phys. 1503:104 2015. Erratum. J. High Energy Phys. 1505:83 2015.)
    [Google Scholar]
  109. 109.
    Bsaisou J, Meißner U-G, Nogga A, Wirzba A. Ann. Phys. 359:317 2015.)
    [Google Scholar]
  110. 110.
    de Vries J et al. Front. Phys. 8:218 2020.)
    [Google Scholar]
  111. 111.
    Samart D, Schat C, Schindler MR, Phillips DR. Phys. Rev. C 94:2024001 2016.)
    [Google Scholar]
  112. 112.
    Bowman AC, Vanasse J. Phys. Rev. C 107:024001 2023.)
    [Google Scholar]
  113. 113.
    de Vries J, Mereghetti E, Seng CY, Walker-Loud A. Phys. Lett. B 766:254 2017.)
    [Google Scholar]
  114. 114.
    Song YH, Lazauskas R, Gudkov V. Phys. Rev. C 84:025501 2011.)
    [Google Scholar]
  115. 115.
    Chow CK, Yan TM. Phys. Rev. D 53:5105 1996.)
    [Google Scholar]
  116. 116.
    Shrock R. Proceedings from the Institute for Nuclear Theory, Volume 12 Phenomenology of Large Nc QCD11827. Singapore: World Scientific 2002.)
    [Google Scholar]
  117. 117.
    Richardson TR, Schindler MR, Pastore S, Springer RP. Phys. Rev. C 103:5055501 2021.)
    [Google Scholar]
  118. 118.
    Chen JW, Rupak G, Savage MJ. Nucl. Phys. A 653:386 1999.)
    [Google Scholar]
  119. 119.
    Butler M, Chen JW. Nucl. Phys. A 675:575 2000.)
    [Google Scholar]
  120. 120.
    Butler M, Chen JW, Vogel P. Phys. Lett. B 549:26 2002.)
    [Google Scholar]
  121. 121.
    Chen JW, Heeger KM, Robertson RGH. Phys. Rev. C 67:025801 2003.)
    [Google Scholar]
  122. 122.
    Ando S et al. Phys. Lett. B 668:187 2008.)
    [Google Scholar]
  123. 123.
    De-Leon H, Platter L, Gazit D. Phys. Rev. C 100:5055502 2019.)
    [Google Scholar]
  124. 124.
    Acharya B, Bacca S. Phys. Rev. C 101:015505 2020.)
    [Google Scholar]
  125. 125.
    Savage MJ et al. Phys. Rev. Lett. 119:6062002 2017.)
    [Google Scholar]
  126. 126.
    Cirigliano V et al. Phys. Rev. Lett. 120:20202001 2018.)
    [Google Scholar]
  127. 127.
    Cirigliano V et al. Phys. Rev. C 100:5055504 2019.)
    [Google Scholar]
  128. 128.
    Cirigliano V, Dekens W, Mereghetti E, Walker-Loud A. Phys. Rev. C 97:6065501 2018. Erratum. Phys. Rev. C 100:019903 2019.)
    [Google Scholar]
  129. 129.
    Cirigliano V et al. Phys. Rev. Lett. 126:17172002 2021.)
    [Google Scholar]
  130. 130.
    Cirigliano V et al. J. High Energy Phys. 2105:289 2021.)
    [Google Scholar]
  131. 131.
    Richardson TR, Lin X, Nguyen ST. Phys. Rev. C 106:4044003 2022.)
    [Google Scholar]
  132. 132.
    Andreoli L, Cirigliano V, Gandolfi S, Pederiva F. Phys. Rev. C 99:2025501 2019.)
    [Google Scholar]
  133. 133.
    Fujita J, Miyazawa H. Prog. Theor. Phys. 17:360 1957.)
    [Google Scholar]
  134. 134.
    Epelbaum E, Gasparyan A, Krebs H, Schat C. Eur. Phys. J. A 51:326 2015.)
    [Google Scholar]
  135. 135.
    McLerran L, Pisarski RD. Nucl. Phys. A 796:83 2007.)
    [Google Scholar]
  136. 136.
    Klebanov IR. Nucl. Phys. B 262:133 1985.)
    [Google Scholar]
  137. 137.
    Bonanno L, Giacosa F. Nucl. Phys. A 859:49 2011.)
    [Google Scholar]
  138. 138.
    Torrieri G, Mishustin I. Phys. Rev. C 82:055202 2010.)
    [Google Scholar]
  139. 139.
    Heinz A, Giacosa F, Rischke DH. Phys. Rev. D 85:056005 2012.)
    [Google Scholar]
  140. 140.
    Giacosa F, Pagliara G. Nucl. Phys. A 968:366 2017.)
    [Google Scholar]
  141. 141.
    Hidaka Y, Kojo T, McLerran L, Pisarski RD. Nucl. Phys. A 852:155 2011.)
    [Google Scholar]
  142. 142.
    Shuster E, Son DT. Nucl. Phys. B 573:434 2000.)
    [Google Scholar]
  143. 143.
    Kojo T. Nucl. Phys. A 899:76 2013.)
    [Google Scholar]
  144. 144.
    Howell CR et al. J. Phys. G 49:1010502 2022.)
    [Google Scholar]
  145. 145.
    Körber C. 2014. Large-Nc consistency of chiral nuclear forces. M.S. Thesis Ruhr-Universität Bochum Bochum, Ger:.
    [Google Scholar]
  146. 146.
    Cherman A, Cohen TD. J. High Energy Phys. 0612:035 2006.)
    [Google Scholar]
  147. 147.
    Cherman A, Cohen TD, Lebed RF. Phys. Rev. D 80:036002 2009.)
    [Google Scholar]
  148. 148.
    Lebed RF, TerBeek RH. Phys. Rev. D 83:016009 2011.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102020-014052
Loading
/content/journals/10.1146/annurev-nucl-102020-014052
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error