1932

Abstract

High-energy electron scattering is a clean, precise probe for measurements of hadronic and nuclear structure and plays a key role in understanding the role of high-momentum nucleons (and quarks) in nuclei. Jefferson Lab has dramatically expanded our knowledge of the high-momentum nucleons generated by short-range correlations, providing sufficient insight to model much of their impact on nuclear structure in neutron stars and in low- to medium-energy scattering observables, including neutrino oscillation measurements. These short-range correlations also seem related to the modification of the quark distributions in nuclei, and efforts to improve our understanding of the internal structure of these short-distance and high-momentum configurations in nuclei will provide important input on a wide range of high-energy observables.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102020-022253
2022-09-26
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-102020-022253.html?itemId=/content/journals/10.1146/annurev-nucl-102020-022253&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Frankfurt LL, Strikman MI. Phys. Rep. 76:215 1981.)
    [Google Scholar]
  2. 2.
    Frankfurt LL, Strikman MI. Phys. Rep. 160:235 1988.)
    [Google Scholar]
  3. 3.
    Sargsian MM et al. J. Phys. G 29:R1 2003.)
    [Google Scholar]
  4. 4.
    Arrington J, Higinbotham DW, Rosner G, Sargsian M. Prog. Part. Nucl. Phys. 67:898 2012.)
    [Google Scholar]
  5. 5.
    Hen O, Miller GA, Piasetzky E, Weinstein LB. Rev. Mod. Phys. 89:045002 2017.)
    [Google Scholar]
  6. 6.
    Fomin N, Higinbotham D, Sargsian M, Solvignon P. Annu. Rev. Nucl. Part. Sci. 67:129 2017.)
    [Google Scholar]
  7. 7.
    Egiyan KS et al. Phys. Rev. Lett. 98:262502 2007.)
    [Google Scholar]
  8. 8.
    Boeglin WU et al. Phys. Rev. Lett. 107:262501 2011.)
    [Google Scholar]
  9. 9.
    Sargsian MM. Phys. Rev. C 82:014612 2010.)
    [Google Scholar]
  10. 10.
    Benhar O, Day D, Sick I. Rev. Mod. Phys. 80:189 2008.)
    [Google Scholar]
  11. 11.
    Day DB et al. Phys. Rev. Lett. 59:427 1987.)
    [Google Scholar]
  12. 12.
    Arrington J et al. Phys. Rev. Lett. 82:2056 1999.)
    [Google Scholar]
  13. 13.
    Ciofi degli Atti C, West GB. Phys. Lett. B 458:447 1999.)
    [Google Scholar]
  14. 14.
    Arrington J. Baryons 2002: Proceedings of the 9th International Conference on the Structure of Baryons CE Carlson, BA Mecking 567–70 Singapore: World Scientific 2003.)
    [Google Scholar]
  15. 15.
    Fomin N et al. Phys. Rev. Lett. 108:092502 2012.)
    [Google Scholar]
  16. 16.
    Frankfurt LL, Strikman MI, Day DB, Sargsian M. Phys. Rev. C 48:2451 1993.)
    [Google Scholar]
  17. 17.
    Ciofi degli Atti C, Simula S. Phys. Lett. B 325:276 1994.)
    [Google Scholar]
  18. 18.
    Ciofi degli Atti C, Simula S. Phys. Rev. C 53:1689 1996.)
    [Google Scholar]
  19. 19.
    Egiyan KS et al. Phys. Rev. C 68:014313 2003.)
    [Google Scholar]
  20. 20.
    Egiyan KS et al. Phys. Rev. Lett. 96:082501 2006.)
    [Google Scholar]
  21. 21.
    Schmookler B et al. Nature 566:354 2019.)
    [Google Scholar]
  22. 22.
    Arrington J et al. Phys. Rev. C 86:065204 2012.)
    [Google Scholar]
  23. 23.
    Schiavilla R, Wiringa RB, Pieper SC, Carlson J. Phys. Rev. Lett. 98:132501 2007.)
    [Google Scholar]
  24. 24.
    Alvioli M, Ciofi degli Atti C, Morita H Phys. Rev. Lett. 100:162503 2008.)
    [Google Scholar]
  25. 25.
    Wiringa RB, Schiavilla R, Pieper SC, Carlson J. Phys. Rev. C 78:021001 2008.)
    [Google Scholar]
  26. 26.
    Wiringa RB, Schiavilla R, Pieper SC, Carlson J. Phys. Rev. C 89:024305 2014.)
    [Google Scholar]
  27. 27.
    Colle Cet al. Phys. Rev. C 89:024603( 2014.); Colle C et al. Phys. Rev. C 92:024604 2015.)
    [Google Scholar]
  28. 28.
    Arrington J. EPJ Web Conf. 113:01011 2016.)
    [Google Scholar]
  29. 29.
    Cruz-Torres R et al. Nat. Phys. 17:306 2021.)
    [Google Scholar]
  30. 30.
    Feldmeier H, Horiuchi W, Neff T, Suzuki Y. Phys. Rev. C 84:054003 2011.)
    [Google Scholar]
  31. 31.
    Ryckebusch J, Cosyn W, Vanhalst M. J. Phys. G 42:055104 2015.)
    [Google Scholar]
  32. 32.
    Mosel U, Gallmeister K. Phys. Rev. C 94:034610 2016.)
    [Google Scholar]
  33. 33.
    Ryckebusch J, Cosyn W, Vieijra T, Casert C. Phys. Rev. C 100:054620 2019.)
    [Google Scholar]
  34. 34.
    West JR. arXiv:2009.06968 [hep-ph] 2020.)
  35. 35.
    Sargsian MM, Day DB, Frankfurt LL, Strikman MI. Phys. Rev. C 100:044320 2019.)
    [Google Scholar]
  36. 36.
    Weiss R et al. Phys. Rev. C 103:L031301 2021.)
    [Google Scholar]
  37. 37.
    Tang A et al. Phys. Rev. Lett. 90:4042301 2003.)
    [Google Scholar]
  38. 38.
    Shneor R et al. Phys. Rev. Lett. 99:072501 2007.)
    [Google Scholar]
  39. 39.
    Korover I et al. Phys. Rev. Lett. 113:022501 2014.)
    [Google Scholar]
  40. 40.
    Niyazov RA et al. Phys. Rev. Lett. 92:052303 2004. Erratum. Phys. Rev.Lett. 92:099903 (2004)
    [Google Scholar]
  41. 41.
    Baghdasaryan H et al. Phys. Rev. Lett. 105:222501 2010.)
    [Google Scholar]
  42. 42.
    Cohen EO et al. Phys. Rev. Lett. 121:092501 2018.)
    [Google Scholar]
  43. 43.
    Moniz EJ et al. Phys. Rev. Lett. 26:445 1971.)
    [Google Scholar]
  44. 44.
    Piasetzky E et al. Phys. Rev. Lett. 97:162504 2006.)
    [Google Scholar]
  45. 45.
    Subedi R et al. Science 320:1476 2008.)
    [Google Scholar]
  46. 46.
    Hen O et al. Science 346:614 2014.)
    [Google Scholar]
  47. 47.
    Duer M et al. Phys. Rev. Lett. 122:172502 2019.)
    [Google Scholar]
  48. 48.
    Duer M et al. Nature 560:617 2018.)
    [Google Scholar]
  49. 49.
    Cruz-Torres R et al. Phys. Lett. B 797:134890 2019.)
    [Google Scholar]
  50. 50.
    Nguyen D et al. Phys. Rev. C 102:064004 2020.)
    [Google Scholar]
  51. 51.
    Cruz-Torres R et al. Phys. Rev. Lett. 124:212501 2020.)
    [Google Scholar]
  52. 52.
    Li S et al. The isospin structure of short-range correlations in the mirror nuclei 3H and 3He. Nature press 2022.)
    [Google Scholar]
  53. 53.
    Korover I et al. Phys. Lett. B 820:136523 2021.)
    [Google Scholar]
  54. 54.
    Schmidt A et al. Nature 578:540 2020.)
    [Google Scholar]
  55. 55.
    Weiss R, Bazak B, Barnea N. Phys. Rev. C 92:054311 2015.)
    [Google Scholar]
  56. 56.
    Weiss R, Cruz-Torres R, Barnea N, Piasetzky E, Hen O. Phys. Lett. B 780:211 2018.)
    [Google Scholar]
  57. 57.
    Sargsian MM, Abrahamyan TV, Strikman MI, Frankfurt LL. Phys. Rev. C 71:044615 2005.)
    [Google Scholar]
  58. 58.
    Pybus JR, Korover I, Weiss R, Schmidt A, Barnea N et al. Phys. Lett. B 805:135429 2020.)
    [Google Scholar]
  59. 59.
    Patsyuk M et al. Nat. Phys. 17:693 2021.)
    [Google Scholar]
  60. 60.
    Hen O et al. Studying short-range correlations with real photon beams at GlueX Propos. PR12-19-003 Jefferson Lab Newport News, VA: 2019.)
    [Google Scholar]
  61. 61.
    Higinbotham D, Piasetzky E, Strikman M. CERN Courier 49N1:22 2009.)
    [Google Scholar]
  62. 62.
    Frankfurt L, Sargsian M, Strikman M. Int. J. Mod. Phys. A 23:2991 2008.)
    [Google Scholar]
  63. 63.
    Kulagin SA, Petti R. Phys. Rev. D 76:094023 2007.)
    [Google Scholar]
  64. 64.
    Niewczas K, Sobczyk JT. Phys. Rev. C 93:035502 2016.)
    [Google Scholar]
  65. 65.
    Van Cuyck T et al. Phys. Rev. C 94:024611 2016.)
    [Google Scholar]
  66. 66.
    Ciofi degli Atti C, Mezzetti CB, Morita H. Phys. Rev. C 95:044327 2017.)
    [Google Scholar]
  67. 67.
    Carlson J et al. Rev. Mod. Phys. 87:1067 2015.)
    [Google Scholar]
  68. 68.
    Sobczyk JE, Acharya B, Bacca S, Hagen G. Phys. Rev. Lett. 127:072501 2021.)
    [Google Scholar]
  69. 69.
    Aubert JJ et al. Phys. Lett. B 123:275 1983.)
    [Google Scholar]
  70. 70.
    Gomez J et al. Phys. Rev. D 49:4348 1994.)
    [Google Scholar]
  71. 71.
    Sick I, Day D. Phys. Lett. B 274:16 1992.)
    [Google Scholar]
  72. 72.
    Geesaman DF, Saito K, Thomas AW. Annu. Rev. Nucl. Part. Sci. 45:337 1995.)
    [Google Scholar]
  73. 73.
    Malace S, Gaskell D, Higinbotham DW, Cloet I. Int. J. Mod. Phys. E 23:1430013 2014.)
    [Google Scholar]
  74. 74.
    Miller GA, Smith JR. Phys. Rev. C 65:015211 2002. Erratum. Phys. Rev. C 66:049903 (2002)
    [Google Scholar]
  75. 75.
    Smith JR, Miller GA. Phys. Rev. C 65:055206 2002.)
    [Google Scholar]
  76. 76.
    Cloët IC et al. J. Phys. G 46:093001 2019.)
    [Google Scholar]
  77. 77.
    Seely J et al. Phys. Rev. Lett. 103:202301 2009.)
    [Google Scholar]
  78. 78.
    Arrington J et al. Phys. Rev. C 104:065203 2021.)
    [Google Scholar]
  79. 79.
    Higinbotham DW, Gomez J, Piasetzky E. arXiv:1003.4497 [hep-ph] 2010.)
  80. 80.
    Weinstein LB et al. Phys. Rev. Lett. 106:052301 2011.)
    [Google Scholar]
  81. 81.
    Hen O, Piasetzky E, Weinstein LB. Phys. Rev. C 85:047301 2012.)
    [Google Scholar]
  82. 82.
    Arrington J, Fomin N. Phys. Rev. Lett. 123:042501 2019.)
    [Google Scholar]
  83. 83.
    Arrington J et al. Inclusive scattering from nuclei at x > 1 in the quasielastic and deeply inelastic regimes Propos. P12-06-105 Jefferson Lab Newport News, VA: 2006.)
    [Google Scholar]
  84. 84.
    Arrington J et al. Detailed studies of the nuclear dependence of F2in light nuclei Propos. PR12-10-008 Jefferson Lab Newport News, VA: 2010.)
    [Google Scholar]
  85. 85.
    Arrington J, Coester F, Holt RJ, Lee TSH. J. Phys. G 36:025005 2009.)
    [Google Scholar]
  86. 86.
    Arrington J, Rubin JG, Melnitchouk W. Phys. Rev. Lett. 108:252001 2012.)
    [Google Scholar]
  87. 87.
    Accardi A et al. Phys. Rev. D 81:034016 2010.)
    [Google Scholar]
  88. 88.
    Accardi A et al. Phys. Rev. D 84:014008 2011.)
    [Google Scholar]
  89. 89.
    Abrams D et al. arXiv:2104.05850 [hep-ex] 2021.)
  90. 90.
    Cocuzza C et al. Phys. Rev. Lett. 127:242001 2021.)
    [Google Scholar]
  91. 91.
    Segarra EP et al. arXiv:2104.07130 [hep-ph] 2021.)
  92. 92.
    Dutta D, Peng JC, Cloet IC, Gaskell D. Phys. Rev. C 83:042201 2011.)
    [Google Scholar]
  93. 93.
    Dutta D et al. Precise measurement of π+/π- ratios in semi-inclusive deep inelastic scattering part II: unraveling the flavor dependence of the EMC effect Propos. PR12-09-004 Jefferson Lab Newport News, VA: 2009.)
    [Google Scholar]
  94. 94.
    Weinstein L et al. Semi-inclusive deep inelastic scattering measurement of A = 3 nuclei with CLAS12 in Hall B Propos. PR12-21-004 Jefferson Lab Newport News, VA: 2021.)
    [Google Scholar]
  95. 95.
    Cloet IC, Bentz W, Thomas AW. Phys. Rev. Lett. 109:182301 2012.)
    [Google Scholar]
  96. 96.
    Arrington J et al. First measurement of the flavor dependence of nuclear PDF modification using parity violating deep inelastic scattering Propos. PR12-21-002 Jefferson Lab Newport News, VA: 2021.)
    [Google Scholar]
  97. 97.
    Ye Z et al. Phys. Rev. C 97:065204 2018.)
    [Google Scholar]
  98. 98.
    Higinbotham DW, Hen O. Phys. Rev. Lett. 114:169201 2015.)
    [Google Scholar]
  99. 99.
    Freese AJ, Sargsian MM, Strikman MI. Eur. Phys. J. C 75:534 2015.)
    [Google Scholar]
  100. 100.
    Arrington J, Fomin N, Li S 3N short range correlations. Letter of Intent LOI12-21-001 Jefferson Lab Newport News, VA: 2021.)
    [Google Scholar]
  101. 101.
    Ye Z, Arrington J. arXiv:1810.03667 [nucl-ex] 2018.)
  102. 102.
    Hen O et al. Exclusive studies of short range correlations in nuclei using CLAS12 Exp. E12-17-006A Jefferson Lab Newport News, VA: 2018.)
    [Google Scholar]
  103. 103.
    Bickerstaff RP, Birse MC, Miller GA. Phys. Rev. Lett. 53:2532 1984.)
    [Google Scholar]
  104. 104.
    Melnitchouk W, Sargsian M, Strikman MI. Z. Phys. A 359:99 1997.)
    [Google Scholar]
  105. 105.
    Melnitchouk W, Schreiber AW, Thomas AW. Phys. Rev. D 49:1183 1994.)
    [Google Scholar]
  106. 106.
    Mulders PJ, Thomas AW. Phys. Rev. Lett. 52:1199 1984.)
    [Google Scholar]
  107. 107.
    Fomin N et al. Phys. Rev. Lett. 105:212502 2010.)
    [Google Scholar]
  108. 108.
    Brodsky SJ, Robertson DG Confinement Physics: Proceedings of the First ELFE Summer School SD Bass, PAM Guichon 71–110 Gif-sur-Yvette, Fr.: Ed. Front. 1996.)
    [Google Scholar]
  109. 109.
    Brodsky SJ Hadron Physics IJD MacGregor, R Kaiser 121–73 Boca Raton, FL: CRC Press 2006.)
    [Google Scholar]
  110. 110.
    Brodsky SJ. Eur. Phys. J. A 24S1:129 2005.)
    [Google Scholar]
  111. 111.
    Ji CR, Brodsky SJ. Phys. Rev. D 34:1460 1986.)
    [Google Scholar]
  112. 112.
    Souder P et al. Precision measurement of parity-violation in deep inelastic scattering over a broad kinematic range Exp. E12-10-007 Jefferson Lab Newport News, VA: 2010.)
    [Google Scholar]
  113. 113.
    Cosyn W, Sargsian M. Int. J. Mod. Phys. E 26:1730004 2017.)
    [Google Scholar]
  114. 114.
    Strikman M, Weiss C. Phys. Rev. C 97:035209 2018.)
    [Google Scholar]
  115. 115.
    Baillie N et al. Phys. Rev. Lett. 108:142001 2012. Erratum. Phys. Rev. Lett. 108:199902 (2012)
    [Google Scholar]
  116. 116.
    Tkachenko S et al. Phys. Rev. C 89:045206 2014. Addendum. Phys. Rev. C 90:059901 (2014)
    [Google Scholar]
  117. 117.
    Griffioen KA et al. Phys. Rev. C 92:015211 2015.)
    [Google Scholar]
  118. 118.
    Bueltmann S et al. The structure of the free neutron at large x-bjorken. Propos. P12-06-113 Jefferson Lab Newport News, VA: 2006.)
    [Google Scholar]
  119. 119.
    Hen O et al. In medium proton structure functions, SRC, and the EMC effect. Exp.E12–11 -003A Jefferson Lab Newport News, VA: 2015.)
    [Google Scholar]
  120. 120.
    Hen O, Gilad S, Weinstein L, Wood S In medium nucleon structure functions, SRC, and the EMC effect Exp. E12-11-107 Jefferson Lab Newport News, VA: 2011.)
    [Google Scholar]
  121. 121.
    Jentsch A, Tu Z, Weiss C. Phys. Rev. C 104:065205 2021.)
    [Google Scholar]
  122. 122.
    Arrington J et al. arXiv:2112.00060 [nucl-ex] 2021.)
/content/journals/10.1146/annurev-nucl-102020-022253
Loading
/content/journals/10.1146/annurev-nucl-102020-022253
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error