1932

Abstract

In the past decade, electroweak penguin decays have provided a number of precision measurements and have become one of the most competitive ways to search for New Physics describing phenomena beyond the Standard Model. An overview of the measurements made at the factories and hadron colliders is given, and the experimental methods are presented. Experimental measurements required to provide further insight into present indications of New Physics are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102020-092535
2022-09-26
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-102020-092535.html?itemId=/content/journals/10.1146/annurev-nucl-102020-092535&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shifman MA. arXiv:hep-ph/9510397 1995.)
  2. 2.
    Glashow SL, Iliopoulos J, Maiani L. Phys. Rev. D 2:1285 1970.)
    [Google Scholar]
  3. 3.
    Mannel T. Springer Tracts in Modern Physics (STMP), Vol. 203: Effective Field Theories in Flavour Physics Berlin: Springer 2004.)
    [Google Scholar]
  4. 4.
    D'Ambrosio G, Giudice GF, Isidori G, Strumia A Nucl. Phys. B 645:155 2002.)
    [Google Scholar]
  5. 5.
    Amhis Y et al. Eur. Phys. J. C 81:3226 2021.)
    [Google Scholar]
  6. 6.
    Zyla PA et al. Prog. Theor. Exp. Phys. 2020:8083C01 2020.)
    [Google Scholar]
  7. 7.
    Bediaga I et al. (LHCb Collab.) arXiv:1808.08865 [hep-ex] 2018.)
  8. 8.
    Aaij R et al. J. High Energy Phys. 1708:55 2017.)
    [Google Scholar]
  9. 9.
    Abe K et al. Phys. Rev. D 67:032003 2003.)
    [Google Scholar]
  10. 10.
    Aaij R et al. J. Instrum. 14:04P04013 2019.)
    [Google Scholar]
  11. 11.
    Aaij R et al. Phys. Rev. D 104:3032005 2021.)
    [Google Scholar]
  12. 12.
    Bobeth C et al. Phys. Rev. Lett. 112:101801 2014.)
    [Google Scholar]
  13. 13.
    Beneke M, Bobeth C, Szafron R. J. High Energy Phys. 1910:232 2019.)
    [Google Scholar]
  14. 14.
    Aaboud M et al. J. High Energy Phys. 1904:98 2019.)
    [Google Scholar]
  15. 15.
    Sirunyan AM et al. J. High Energy Phys. 2004:188 2020.)
    [Google Scholar]
  16. 16.
    Aaij R et al. (LHCb Collab.) Phys. Rev. Lett. 128:041801 2022.)
    [Google Scholar]
  17. 17.
    Khachatryan V et al. Nature 522:68 2015.)
    [Google Scholar]
  18. 18.
    Aaij R et al. (LHCb Collab.) Phys. Rev. D 105:012010 2022.)
    [Google Scholar]
  19. 19.
    Ammar R et al. Phys. Rev. Lett. 71:674 1993.)
    [Google Scholar]
  20. 20.
    Aaij R et al. Phys. Rev. Lett. 123:3031801 2019.)
    [Google Scholar]
  21. 21.
    Misiak M et al. Phys. Rev. Lett. 114:22221801 2015.)
    [Google Scholar]
  22. 22.
    Limosani A et al. Phys. Rev. Lett. 103:241801 2009.)
    [Google Scholar]
  23. 23.
    Bosch SW, Lange BO, Neubert M, Paz G. Nucl. Phys. B 699:335 2004.)
    [Google Scholar]
  24. 24.
    Aubert B et al. Phys. Rev. D 77:051103 2008.)
    [Google Scholar]
  25. 25.
    Abe K et al. Phys. Rev. Lett. 96:221601 2006.)
    [Google Scholar]
  26. 26.
    Abulencia A et al. Phys. Rev. Lett. 97:242003 2006.)
    [Google Scholar]
  27. 27.
    Aaij R et al. Phys. Rev. Lett. 127:15151801 2021.)
    [Google Scholar]
  28. 28.
    Aaij R et al. Eur. Phys. J. C 77:3161 2017.)
    [Google Scholar]
  29. 29.
    Aaij R et al. J. High Energy Phys. 1406:133 2014.)
    [Google Scholar]
  30. 30.
    Lees JP et al. Phys. Rev. D 87:11112005 2013.)
    [Google Scholar]
  31. 31.
    Abudinén F et al. Phys. Rev. Lett. 127:18181802 2021.)
    [Google Scholar]
  32. 32.
    Bause R, Gisbert H, Golz M, Hiller G. J. High Energy Phys. 2112:61 2021.)
    [Google Scholar]
  33. 33.
    Huber T et al. J. High Energy Phys. 2010:88 2020.)
    [Google Scholar]
  34. 34.
    Iwasaki M et al. Phys. Rev. D 72:092005 2005.)
    [Google Scholar]
  35. 35.
    Lees JP et al. Phys. Rev. Lett. 112:211802 2014.)
    [Google Scholar]
  36. 36.
    Amhis Y, Owen P. Eur. Phys. J. C 82:371 2022.)
    [Google Scholar]
  37. 37.
    Aaij R et al. J. High Energy Phys. 1510:34 2015.)
    [Google Scholar]
  38. 38.
    Egede U et al. J. High Energy Phys. 0811:032 2008.)
    [Google Scholar]
  39. 39.
    Aaij R et al. J. High Energy Phys. 1308:131 2013.)
    [Google Scholar]
  40. 40.
    Aaij R et al. Phys. Rev. Lett. 125:1011802 2020.); Aaij R et al. (LHCb Collab.) Measurement of CP-averaged observables in theB0K*0 μ+μdecay Rep. LHCb-PAPER-2020-002, CERN Geneva: https://cds.cern.ch/record/2712641 2022.)
    [Google Scholar]
  41. 41.
    Aaboud M et al. J. High Energy Phys. 1810:47 2018.)
    [Google Scholar]
  42. 42.
    Aubert B et al. Phys. Rev. D 73:092001 2006.)
    [Google Scholar]
  43. 43.
    Wehle S et al. Phys. Rev. Lett. 118:111801 2017.)
    [Google Scholar]
  44. 44.
    Aaltonen T et al. Phys. Rev. Lett. 108:081807 2012.)
    [Google Scholar]
  45. 45.
    Sirunyan AM et al. Phys. Lett. B 781:517 2018.)
    [Google Scholar]
  46. 46.
    Ali A, Ball P, Handoko LT, Hiller G. Phys. Rev. D 61:074024 2000.)
    [Google Scholar]
  47. 47.
    Kruger F, Matias J. Phys. Rev. D 71:094009 2005.)
    [Google Scholar]
  48. 48.
    Descotes-Genon S, Matias J, Ramon M, Virto J J. High Energy Phys. 1301:48 2013.)
    [Google Scholar]
  49. 49.
    Bharucha A, Straub DM, Zwicky R. J. High Energy Phys. 1608:98 2016.)
    [Google Scholar]
  50. 50.
    Horgan RR, Liu Z, Meinel S, Wingate M. Phys. Rev. D 89:9094501 2014.)
    [Google Scholar]
  51. 51.
    Kruger F, Sehgal LM, Sinha N, Sinha R. Phys. Rev. D 61:114028 2000.). Erratum. Phys. Rev. D 63:019901 2001.)
    [Google Scholar]
  52. 52.
    Descotes-Genon S, Hurth T, Matias J, Virto J. J. High Energy Phys. 1305:137 2013.)
    [Google Scholar]
  53. 53.
    Altmannshofer W et al. J. High Energy Phys. 0901:19 2009.)
    [Google Scholar]
  54. 54.
    Jäger S, Martin Camalich J Phys. Rev. D 93:014028 2016.)
    [Google Scholar]
  55. 55.
    Lyon J, Zwicky R. arXiv:1406.0566 [hep-ph] 2014.)
  56. 56.
    Ciuchini M et al. J. High Energy Phys. 1606:116 2016.)
    [Google Scholar]
  57. 57.
    Bobeth C, Chrzaszcz M, van Dyk D, Virto J. Eur. Phys. J. C 78:6451 2018.)
    [Google Scholar]
  58. 58.
    Blake T et al. Eur. Phys. J. C 78:6453 2018.)
    [Google Scholar]
  59. 59.
    Aaij R et al. Phys. Rev. Lett. 126:16161802 2021.)
    [Google Scholar]
  60. 60.
    Aaij R et al. J. High Energy Phys. 1405:82 2014.)
    [Google Scholar]
  61. 61.
    Aaij R et al. J. High Energy Phys. 2111:43 2021.)
    [Google Scholar]
  62. 62.
    Aaij R et al. J. High Energy Phys. 1809:146 2018.)
    [Google Scholar]
  63. 63.
    Aaij R et al. J. High Energy Phys. 2012:81 2020.)
    [Google Scholar]
  64. 64.
    Capdevila B, Descotes-Genon S, Matias J, Virto J J. High Energy Phys. 1610:75 2016.)
    [Google Scholar]
  65. 65.
    Wehle S et al. Phys. Rev. Lett. 118:11111801 2017.)
    [Google Scholar]
  66. 66.
    Aaij R et al. J. High Energy Phys. 1409:177 2014.)
    [Google Scholar]
  67. 67.
    Benzke M, Lee SJ, Neubert M, Paz G. Phys. Rev. Lett. 106:141801 2011.)
    [Google Scholar]
  68. 68.
    Lees JP et al. Phys. Rev. D 90:9092001 2014.)
    [Google Scholar]
  69. 69.
    Watanuki S et al. Phys. Rev. D 99:3032012 2019.)
    [Google Scholar]
  70. 70.
    Aubert B et al. Phys. Rev. D 78:071102 2008.)
    [Google Scholar]
  71. 71.
    Ushiroda Y et al. Phys. Rev. Lett. 100:021602 2008.)
    [Google Scholar]
  72. 72.
    Aaij R et al. Phys. Rev. Lett. 123:8081802 2019.)
    [Google Scholar]
  73. 73.
    Hiller G, Krüger F. Phys. Rev. D 69:074020 2004.)
    [Google Scholar]
  74. 74.
    Aaij R et al. (LHCb Collab.) arXiv:2103.11769 [hep-ex] 2021.)
  75. 75.
    Algueró M et al. Eur. Phys. J. C 82:326 2022.)
    [Google Scholar]
  76. 76.
    Altmannshofer W, Stangl P. Eur. Phys. J. C 81:10952 2021.)
    [Google Scholar]
  77. 77.
    Ciuchini M et al. Phys. Rev. D 103:1015030 2021.)
    [Google Scholar]
  78. 78.
    Hurth T, Mahmoudi F, Santos DM, Neshatpour S. Phys. Lett. B 824:136838 2022.)
    [Google Scholar]
  79. 79.
    Altmannshofer W et al. PTEP 2019:123C01 2019.). Erratum. PTEP 2020:029201 2020.)
    [Google Scholar]
  80. 80.
    Kamenik JF, Monteil S, Semkiv A, Silva LV. Eur. Phys. J. C 77:10701 2017.)
    [Google Scholar]
  81. 81.
    ATLAS Collab Prospects for the(B0(s) → μ+μ)measurements with the ATLAS detector in the Run 2 and HL-LHC data campaigns Tech. Rep. ATL-PHYS-PUB-2018-005, CERN Geneva: 2018.)
    [Google Scholar]
  82. 82.
    CMS Collab Measurement of rareB → μ+μdecays with the Phase-2 upgraded CMS detector at the HL-LHC Tech. Rep. CMS-PAS-FTR-18-013, CERN Geneva: 2018.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102020-092535
Loading
/content/journals/10.1146/annurev-nucl-102020-092535
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error