1932

Abstract

Long-baseline neutrino oscillation experiments, which are among the largest neutrino experiments in the world, have extensive physics programs to make precision measurements of three-flavor oscillation parameters, search for physics beyond the Standard Model, and study neutrinos from astrophysical sources. In this article, experimental considerations, including oscillation phenomenology, detector and experiment design, and analysis strategies, are described, with a focus on the three-flavor oscillation measurements. Current and future experiments are discussed, and significant sources of systematic uncertainty, along with mitigation strategies, are emphasized as control of systematic uncertainty is critical for success in precise measurement of long-baseline oscillation parameters. This article is structured as a primer for those new to this area of experimental work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102020-101615
2023-09-25
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-102020-101615.html?itemId=/content/journals/10.1146/annurev-nucl-102020-101615&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Esteban I et al. J. High Energy Phys. 2009:178 2020.)
    [Google Scholar]
  2. 2.
    Fukuda Y et al.(Super-Kamiokande Collab.) Phys. Rev. Lett. 81:1562 1998.)
    [Google Scholar]
  3. 3.
    Ahmad QR et al.(SNO Collab.) Phys. Rev. Lett. 87:071301 2001.)
    [Google Scholar]
  4. 4.
    Ahmad QR et al.(SNO Collab.) Phys. Rev. Lett. 89:011301 2002.)
    [Google Scholar]
  5. 5.
    Pontecorvo B Sov. Phys. JETP 6:429 1957.)
    [Google Scholar]
  6. 6.
    Maki Z, Nakagawa M, Sakata S Prog. Theor. Phys. 28:870 1962.)
    [Google Scholar]
  7. 7.
    Mena O, Parke S Phys. Rev. D 69:117301 2004.)
    [Google Scholar]
  8. 8.
    Smirnov AY Phys. Scripta T 121:57 2005.)
    [Google Scholar]
  9. 9.
    Workman RL et al.(Part. Data Group) PTEP 2022:083C01 2022.)
    [Google Scholar]
  10. 10.
    Giunti C, Lasserre T. Annu. Rev. Nucl. Part. Sci. 69:163 2019.)
    [Google Scholar]
  11. 11.
    Agafonova N et al.(OPERA Collab.) Phys. Rev. D 100:051301 2019.)
    [Google Scholar]
  12. 12.
    Jarlskog C Z. Phys. C 29:491 1985.)
    [Google Scholar]
  13. 13.
    Adamson P et al.(MINOS Collab.) Phys. Rev. Lett. 107:011802 2011.)
    [Google Scholar]
  14. 14.
    Acero MA et al.(NOvA Collab.) Phys. Rev. Lett. 127:201801 2021.)
    [Google Scholar]
  15. 15.
    Abe K et al.(T2K Collab.) Phys. Rev. D 99:071103 2019.)
    [Google Scholar]
  16. 16.
    Abe K et al.(T2K Collab.) Phys. Rev. D 91:072010 2015.)
    [Google Scholar]
  17. 17.
    Acero MA et al.(NOvA Collab.) Phys. Rev. D 106:032004 2022.)
    [Google Scholar]
  18. 18.
    Abud AA et al.(DUNE Collab.) arXiv:2203.06100 [hep-ex] 2022.)
  19. 19.
    Abi B et al.(DUNE Collab.) Eur. Phys. J. C 80:978 2020.)
    [Google Scholar]
  20. 20.
    Abi B et al.(DUNE Collab.) J. Instrum. 15:T08008 2020.)
    [Google Scholar]
  21. 21.
    Bian J et al.(Hyper-Kamiokande Collab.) arXiv:2203.02029 [hep-ex] 2022.)
  22. 22.
    Abe K et al.(Hyper-Kamiokande Collab.) arXiv:1805.04163 [physics.ins-det] 2018.)
  23. 23.
    Adamson P et al. Nucl. Instrum. Methods A 806:279 2016.)
    [Google Scholar]
  24. 24.
    High-Intensity Proton Accel. Proj. Team. JAERI-Tech 2003-044/KEK Report 2002-13, Jpn. At. Energy Res. Inst., T kai, Ibaraki 2003.)
  25. 25.
    Rakhno I, Mokhov N, Tropin I, Striganov S Report FERMILAB-CONF-22-710-AD Fermi National Accel. Lab. Batavia, IL: 2022.)
    [Google Scholar]
  26. 26.
    Duffy KE. First measurement of neutrino and antineutrino oscillation at T2K. PhD Thesis Oxford Univ. Oxford, UK: 2016.)
    [Google Scholar]
  27. 27.
    Acero MA et al.(NOvA Collab.) Phys. Rev. D 98:032012 2018.)
    [Google Scholar]
  28. 28.
    Park J et al.(MINERvA Collab.) Phys. Rev. D 93:112007 2016.)
    [Google Scholar]
  29. 29.
    Marshall CM, McFarland KS, Wilkinson C. Phys. Rev. D 101:032002 2020.)
    [Google Scholar]
  30. 30.
    Mishra S Proceedings of the Workshop on Hadron Structure Functions and Parton Distributions D Geesaman, J Morfin, C Sazama, WK Tung 84123. Singapore: World Scientific 1990.)
    [Google Scholar]
  31. 31.
    Seligman WG. A next-to-leading order QCD analysis of neutrino-iron structure functions at the Tevatron. PhD Thesis Nevis Lab., Columbia Univ. Irvington-on-Hudson, NY: 1997.)
    [Google Scholar]
  32. 32.
    Bodek A, Sarica U, Naples D, Ren L. Eur. Phys. J. C 72:1973 2012.)
    [Google Scholar]
  33. 33.
    Devan J et al.(MINERvA Collab.) Phys. Rev. D 94:112007 2016.)
    [Google Scholar]
  34. 34.
    Sepulveda-Quiroz JA. Measurement of the kaon production normalization in the NuMI target using uncontained charged-current muon neutrino interactions in the NOvA far detector. PhD Thesis Iowa State Univ. Ames: 2018.)
    [Google Scholar]
  35. 35.
    Casper D. Nucl. Phys. B Proc. Suppl. 112:161 2022.)
    [Google Scholar]
  36. 36.
    Formaggio JA, Zeller GP. Rev. Mod. Phys. 84:1307 2012.)
    [Google Scholar]
  37. 37.
    Andreopoulos C et al. Nucl. Instrum. Methods A 614:87 2010.)
    [Google Scholar]
  38. 38.
    Gibuu. The Giessen Boltzmann-Uehling-Uhlenbeck Project. https://gibuu.hepforge.org/ 2023.)
  39. 39.
    Hayato Y, Pickering L. Eur. Phys. J. ST 230:4469 2021.)
    [Google Scholar]
  40. 40.
    Golan T, Juszczak C, Sobczyk JT. Phys. Rev. C 86:015505 2012.)
    [Google Scholar]
  41. 41.
    Mosel U. Annu. Rev. Nucl. Part. Sci. 66:171 2016.)
    [Google Scholar]
  42. 42.
    Campbell JM et al. arXiv:2203.11110 [hep-ph] 2022.)
  43. 43.
    Super-Kamiokande Collab. Research history. Institute for Cosmic Ray Research, University of Tokyo. https://www-sk.icrr.u-tokyo.ac.jp/en/sk/about/history
  44. 45.
    Abratenko P et al.(MicroBooNE Collab.) Phys. Rev. D 105:112003 2022.)
    [Google Scholar]
  45. 46.
    Abe K et al.(Super-Kamiokande Collab.) Nucl. Instrum. Methods A 1027:166248 2022.)
    [Google Scholar]
  46. 47.
    Ayres DS et al.(NOvA Collab.) Report FERMILAB-DESIGN-2007-01 Fermi National Accel. Lab. Batavia, IL: 2007.)
    [Google Scholar]
  47. 48.
    Abe K et al.(T2L Collab.) Report CERN-SPSC-2019-001/SPSC-TDR-006 CERN Geneva: 2019.)
    [Google Scholar]
  48. 49.
    Abed Abud A et al.(DUNE Collab.) Instruments 5:31 2021.)
    [Google Scholar]
  49. 50.
    Sciascia B.(KLOE Collab.) Nuovo Cim. C 033N5:221 2010.)
    [Google Scholar]
  50. 51.
    Abed Abud A et al.(DUNE Collab.) arXiv:2203.06281 [hep-ex] 2022.)
  51. 52.
    Assylbekov S et al. Nucl. Instrum. Methods A 686:48 2012.)
    [Google Scholar]
  52. 53.
    Abe K et al.(T2K Collab.) Phys. Rev. D 91:112010 2015.)
    [Google Scholar]
  53. 54.
    Abe K et al.(T2K Collab.) Phys. Rev. Lett. 124:161802 2020.)
    [Google Scholar]
  54. 55.
    Wilks SS. Ann. Math. Stat. 9:60 1938.)
    [Google Scholar]
  55. 56.
    Feldman GJ, Cousins RD. Phys. Rev. D 57:3873 1998.)
    [Google Scholar]
  56. 57.
    Abe K et al.(T2K Collab.) Phys. Rev. D 96:092006 2017. Erratum. Phys. Rev. D 98:019902 2018.)
    [Google Scholar]
  57. 58.
    Gariazzo S et al. J. Phys. G 43:033001 2016.)
    [Google Scholar]
  58. 59.
    Davidson S, Pena-Garay C, Rius N, Santamaria A. J. High Energy Phys. 0303:011 2003.)
    [Google Scholar]
  59. 60.
    Gonzalez-Garcia MC, Maltoni M Phys. Rep. 460:1 2008.)
    [Google Scholar]
  60. 61.
    Biggio C, Blennow M, Fernandez-Martinez E. J. High Energy Phys. 0908:090 2009.)
    [Google Scholar]
  61. 62.
    Argüelles CA et al. arXiv:2203.10811 [hep-ph] 2022.)
  62. 63.
    Dev PSB et al. arXiv:2203.08771 [hep-ex] 2022.)
  63. 64.
    Martin-Albo J.(DUNE Collab.) Proc. Sci. NuFact2021147 2022.)
    [Google Scholar]
  64. 65.
    Nath P, Fileviez Perez P Phys. Rep. 441:191 2007.)
    [Google Scholar]
  65. 66.
    Mohapatra RN, Marshak RE. Phys. Rev. Lett. 44:1316 1980. Erratum. Phys. Rev. Lett. 44:1643 (1980)
    [Google Scholar]
  66. 67.
    Phillips DG II et al. Phys. Rep. 612:1 2016.)
    [Google Scholar]
  67. 68.
    Takenaka A et al.(Super-Kamiokande Collab.) Phys. Rev. D 102:112011 2020.)
    [Google Scholar]
  68. 69.
    Matsumoto R et al.(Super-Kamiokande Collab.) Phys. Rev. D 106:072003 2022.)
    [Google Scholar]
  69. 70.
    Kajita T. Annu. Rev. Nucl. Part. Sci. 64:343 2014.)
    [Google Scholar]
  70. 71.
    Gann GDO, Zuber K, Bemmerer D, Serenelli A. Annu. Rev. Nucl. Part. Sci. 71:491 2021.)
    [Google Scholar]
  71. 72.
    Mirizzi A et al. Riv. Nuovo Cim. 39:1 2016.)
    [Google Scholar]
  72. 73.
    Horiuchi S, Kneller JP. J. Phys. G 45:043002 2018.)
    [Google Scholar]
  73. 74.
    Antonioli P et al. New J. Phys. 6:114 2004.)
    [Google Scholar]
  74. 75.
    Branca A et al. Symmetry 13:1625 2021.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102020-101615
Loading
/content/journals/10.1146/annurev-nucl-102020-101615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error