1932

Abstract

The fields of light dark matter and neutrino physics offer compelling signals at recoil energies of eV to even meV, well below the keV thresholds of many techniques currently employed in these fields. Sensing of such small energies can benefit from the emergence of so-called quantum sensors, which employ fundamentally quantum mechanical phenomena to transduce energy depositions into electrical signals. This review focuses on quantum sensors under development that will enhance and extend the search for “particle-like” interactions of dark matter or enable new measurements of neutrino properties in the coming years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102020-112133
2022-09-26
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-102020-112133.html?itemId=/content/journals/10.1146/annurev-nucl-102020-112133&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fleming B, Shipsey I co-chairs Basic research needs for high energy physics detector research & development Rep., US Dep. Energy Washington, DC: https://science.osti.gov/-/media/hep/pdf/Reports/2020/DOE_Basic_Research_Needs_Study_on_High_Energy_Physics.pdf?la=en&hash=A5C00A96314706A0379368466710593A1A5C4482 2019.)
    [Google Scholar]
  2. 2.
    Strigari LE. Phys. Rep. 531:11 2013.)
    [Google Scholar]
  3. 3.
    Bertone G, Hooper D. Rev. Mod. Phys. 90:4045002 2018.)
    [Google Scholar]
  4. 4.
    Battaglieri M et al. arXiv:1707.04591 [hep-ph] 2017.)
  5. 5.
    Lee BW, Weinberg SW. Phys. Rev. Lett. 39:165 1977.)
    [Google Scholar]
  6. 6.
    Peccei RD, Quinn HR. Phys. Rev. Lett. 38:251440 1977.)
    [Google Scholar]
  7. 7.
    Peccei RD, Quinn HR. Phys. Rev. D 16:61791 1977.)
    [Google Scholar]
  8. 8.
    Weinberg S. Phys. Rev. Lett. 40:4223 1978.)
    [Google Scholar]
  9. 9.
    Wilczek F. Phys. Rev. Lett. 40:5279 1978.)
    [Google Scholar]
  10. 10.
    Preskill J, Wise MB, Wilczek F. Phys. Lett. B 120:1–3127 1983.)
    [Google Scholar]
  11. 11.
    Dine M, Fischler W. Phys. Lett. B 120:1–3137 1983.)
    [Google Scholar]
  12. 12.
    Abbott LF, Sikivie P. Phys. Lett. B 120:1–3133 1983.)
    [Google Scholar]
  13. 13.
    Lewin JD, Smith PF. Astropart. Phys. 6:87 1996.)
    [Google Scholar]
  14. 14.
    Griffin SM et al. Phys. Rev. D 101:5055004 2020.)
    [Google Scholar]
  15. 15.
    Fukuda S et al. Phys. Rev. Lett. 86:255656 2001.)
    [Google Scholar]
  16. 16.
    Ahmad QR et al. Phys. Rev. Lett. 89:1011301 2002.)
    [Google Scholar]
  17. 17.
    Fukuda Y et al. Phys. Rev. Lett. 81:81562 1998.)
    [Google Scholar]
  18. 18.
    Eguchi K et al. Phys. Rev. Lett. 90:2021802 2003.)
    [Google Scholar]
  19. 19.
    Araki T et al. Phys. Rev. Lett. 94:8081801 2005.)
    [Google Scholar]
  20. 20.
    Ahn MH et al. Phys. Rev. Lett. 90:4041801 2003.)
    [Google Scholar]
  21. 21.
    Michael DG et al. Phys. Rev. Lett. 97:19191801 2006.)
    [Google Scholar]
  22. 22.
    Group PD et al. Prog. Theor. Exp. Phys. 2020:8083C01 2020.)
    [Google Scholar]
  23. 23.
    Formaggio JA, de Gouvêa ALC, Robertson RGH. Phys. Rep. 914:1 2021.)
    [Google Scholar]
  24. 24.
    Aker M et al. Phys. Rev. Lett. 123:22221802 2019.)
    [Google Scholar]
  25. 25.
    Freedman DZ. Phys. Rev. D 9:51389 1974.)
    [Google Scholar]
  26. 26.
    Cowan CL Jr. et al. Science 124:3212103 1956.)
    [Google Scholar]
  27. 27.
    Akimov D et al. (COHERENT Collab.) Science 357:63561123 2017.)
    [Google Scholar]
  28. 28.
    Akimov D et al. (COHERENT Collab.) arXiv:2110.07730 [hep-ex] 2021.)
  29. 29.
    Akimov D et al. (COHERENT Collab.) Phys. Rev. Lett. 126:1012002 2021.)
    [Google Scholar]
  30. 30.
    Bhupal Dev PS et al. SciPost Phys. Proc. 2:001 2019.)
    [Google Scholar]
  31. 31.
    Coloma P et al. J. High Energy Phys. 2002:23 2020.)
    [Google Scholar]
  32. 32.
    Orebi Gann GD, Zuber K, Bemmerer D, Serenelli A Annu. Rev. Nucl. Part. Sci. 71:491 2021.)
    [Google Scholar]
  33. 33.
    Billard J, Strigari LE, Figueroa-Feliciano E. Phys. Rev. D 91:9095023 2015.)
    [Google Scholar]
  34. 34.
    Cerdeño DG et al. J. High Energy Phys. 1605:118 2016.)
    [Google Scholar]
  35. 35.
    Essig R, Sholapurkar M, Yu TT. Phys. Rev. D 97:9095029 2018.)
    [Google Scholar]
  36. 36.
    Bœhm C et al. J. Cosmol. Astropart. Phys. 1901.043 2019.)
    [Google Scholar]
  37. 37.
    Sierra DA, Dutta B, Liao S, Strigari LE. J. High Energy Phys. 1912:124 2019.)
    [Google Scholar]
  38. 38.
    Strigari LE. Phys. Rev. D 93:10103534 2016.)
    [Google Scholar]
  39. 39.
    Yanagisawa C. Front. Phys. 2:30 2014.)
    [Google Scholar]
  40. 40.
    Baracchini E et al. arXiv:1808.01892 [physics.ins-det] 2018.)
  41. 41.
    Betti MG et al. J. Cosmol. Astropart. Phys. 1907.047 2019.)
    [Google Scholar]
  42. 42.
    Van Duzer T, Turner CW. Principles of Superconductive Devices and Circuits Upper Saddle River, NJ: Prentice Hall. , 2nd ed.. ( 1998.)
    [Google Scholar]
  43. 43.
    Sakai K et al. J. Low Temp. Phys. 199:3–4949 2020.)
    [Google Scholar]
  44. 44.
    Ren R et al. Phys. Rev. D 104:3032010 2021.)
    [Google Scholar]
  45. 45.
    Battistelli ES et al. Eur. Phys. J. C 75:353 2015.)
    [Google Scholar]
  46. 46.
    Doriese WB et al. J. Low Temp. Phys. 184:1–2389 2016.)
    [Google Scholar]
  47. 47.
    Morgan KM et al. Appl. Phys. Lett. 109:11112604 2016.)
    [Google Scholar]
  48. 48.
    Mates JAB et al. Appl. Phys. Lett. 111:6062601 2017.)
    [Google Scholar]
  49. 49.
    Irwin KD et al. J. Low Temp. Phys. 193:3–4476 2018.)
    [Google Scholar]
  50. 50.
    Irwin KD, Lehnert KW. Appl. Phys. Lett. 85:112107 2004.)
    [Google Scholar]
  51. 51.
    Henderson SW et al. Proceedings of SPIE, Vol. 10708: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX J Zmuidzinas, JR Gao, Paper 1070819 Bellingham, WA: SPIE 2018.)
    [Google Scholar]
  52. 52.
    Zmuidzinas J. Annu. Rev. Condens. Matter Phys. 3:169 2012.)
    [Google Scholar]
  53. 53.
    Mazin BA et al. Proceedings of SPIE, Vol. 4849: Highly Innovative Space Telescope Concepts HA MacEwen 283–93 Bellingham, WA: SPIE 2002.)
    [Google Scholar]
  54. 54.
    Day PK et al. Nature 425:817 2003.)
    [Google Scholar]
  55. 55.
    Doyle S et al. J. Low Temp. Phys. 151:1–2530 2008.)
    [Google Scholar]
  56. 56.
    Duan R et al. 2010. Proceedings of SPIE, Vol. 7741: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V WS Holland, J Zmuidzinas, Paper 77411V Bellingham, WA: SPIE
    [Google Scholar]
  57. 57.
    Duan R, Golwala S 2020. Proceedings of SPIE, Vol. 11453: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X J Zmuidzinas, J-R Gao, Paper 114531Z Bellingham, WA: SPIE
    [Google Scholar]
  58. 58.
    Gordon S et al. J. Astron. Instrum. 5:41641003 2016.)
    [Google Scholar]
  59. 59.
    Bourrion O et al. J. Instrum. 11:11P11001 2016.)
    [Google Scholar]
  60. 60.
    van Rantwijk J et al. IEEE Trans. Microw. Theory Tech. 64:61876 2016.)
    [Google Scholar]
  61. 61.
    de Visser PJ, Withington S, Goldie DJ. J. Appl. Phys. 108:114504 2010.)
    [Google Scholar]
  62. 62.
    de Visser PJ et al. Appl. Phys. Lett. 100:16162601 2012.)
    [Google Scholar]
  63. 63.
    de Visser PJ et al. Phys. Rev. Lett. 112:047004 2014.)
    [Google Scholar]
  64. 64.
    Bueno J et al. Appl. Phys. Lett. 105:192601 2014.)
    [Google Scholar]
  65. 65.
    de Rooij SAH et al. Phys. Rev. B 104:18L180506 2021.)
    [Google Scholar]
  66. 66.
    Baselmans J, Yates S, Diener P, Visser P. J. Low Temp. Phys. 167:3–4360 2012.)
    [Google Scholar]
  67. 67.
    Gao J et al. Appl. Phys. Lett. 90:2507 2007.)
    [Google Scholar]
  68. 68.
    Gao J et al. Appl. Phys. Lett. 92:2505 2008.)
    [Google Scholar]
  69. 69.
    Gao J et al. Appl. Phys. Lett. 92:212504 2008.)
    [Google Scholar]
  70. 70.
    Gao J. The physics of superconducting microwave resonators PhD Thesis, Calif. Inst. Technol. Pasadena: 2008.)
    [Google Scholar]
  71. 71.
    Esmaeil Zadeh I et al. Appl. Phys. Lett. 118:19190502 2021.)
    [Google Scholar]
  72. 72.
    You L. Nanophotonics 9:92673 2020.)
    [Google Scholar]
  73. 73.
    Hochberg Y et al. Phys. Rev. Lett. 123:15151802 2019.)
    [Google Scholar]
  74. 74.
    Bouchiat V et al. Phys. Scr. T76:1165 1998.)
    [Google Scholar]
  75. 75.
    Blais A et al. Phys. Rev. A 69:6062320 2004.)
    [Google Scholar]
  76. 76.
    Wallraff A et al. Nature 431:7005162 2004.)
    [Google Scholar]
  77. 77.
    Shaw MD et al. Phys. Rev. B 79:14144511 2009.)
    [Google Scholar]
  78. 78.
    Echternach PM, Pepper BJ, Reck T, Bradford CM. Nat. Astron. 2:90 2018.)
    [Google Scholar]
  79. 79.
    Holmström E, Kuronen A, Nordlund K. Phys. Rev. B 78:4045202 2008.)
    [Google Scholar]
  80. 80.
    Trickle T et al. J. High Energy Phys. 2003.36 2020.)
    [Google Scholar]
  81. 81.
    Hochberg Y et al. Phys. Rev. Lett. 127:15151802 2021.)
    [Google Scholar]
  82. 82.
    Kadribasic F et al. Phys. Rev. Lett. 120:11111301 2018.)
    [Google Scholar]
  83. 83.
    Griffin S, Knapen S, Lin T, Zurek KM. Phys. Rev. D 98:11115034 2018.)
    [Google Scholar]
  84. 84.
    Coskuner A, Mitridate A, Olivares A, Zurek KM. Phys. Rev. D 103:1016006 2021.)
    [Google Scholar]
  85. 85.
    Hochberg Y, Pyle M, Zhao Y, Zurek KM. J. High Energy Phys. 1608:57 2016.)
    [Google Scholar]
  86. 86.
    Mitridate A, Trickle T, Zhang Z, Zurek KM. J. High Energy Phys. 2109:123 2021.)
    [Google Scholar]
  87. 87.
    Hochberg Y, Lin T, Zurek KM. Phys. Rev. D 94:1015019 2016.)
    [Google Scholar]
  88. 88.
    Gelmini GB, Takhistov V, Vitagliano E. Phys. Lett. B 809:135779 2020.)
    [Google Scholar]
  89. 89.
    Robinson AE. Phys. Rev. D 95:2021301 2017.)
    [Google Scholar]
  90. 90.
    Amaral DW et al. Phys. Rev. D 102:9091101 2020.)
    [Google Scholar]
  91. 91.
    Du P, Egana-Ugrinovic D, Essig R, Sholapurkar M. Phys. Rev. X 12:1011009 2022.)
    [Google Scholar]
  92. 92.
    Leman SW. Rev. Sci. Instrum. 83:9091101 2012.)
    [Google Scholar]
  93. 93.
    Zadeh LA, Ragazzini JR. Proc. IRE 40:101223 1952.)
    [Google Scholar]
  94. 94.
    Pyle M. Optimizing the design and analysis of cryogenic semiconductor dark matter detectors for maximum sensitivity PhD Thesis, Stanford Univ. Stanford, CA: 2012.)
    [Google Scholar]
  95. 95.
    Kurakado M. Nucl. Instrum. Methods A 196:275 1982.)
    [Google Scholar]
  96. 96.
    Kozorezov AG et al. Phys. Rev. B 611:11807 2000.)
    [Google Scholar]
  97. 97.
    Fink CW et al. Appl. Phys. Lett. 118:2022601 2021.)
    [Google Scholar]
  98. 98.
    Rothe J et al. J. Low Temp. Phys. 199:1–2433 2020.)
    [Google Scholar]
  99. 99.
    Chen R, Figueroa-Feliciano E, Schmidt B. arXiv:2111.05757 [physics.ins-det] 2021.)
  100. 100.
    Baulieu G et al. arXiv:2111.10308 [physics.ins-det] 2021.)
  101. 101.
    Tiffenberg J et al. Phys. Rev. Lett. 119:13131802 2017.)
    [Google Scholar]
  102. 102.
    Barak L et al. Phys. Rev. Lett. 125:17171802 2020.)
    [Google Scholar]
  103. 103.
    Barak L et al. Phys. Rev. Appl. 17:1014022 2022.)
    [Google Scholar]
  104. 104.
    Neganov BS, Trofimov VN. JETP Lett. 28:328 1978.)
    [Google Scholar]
  105. 105.
    Luke PN. J. Appl. Phys. 64:6858 1988.)
    [Google Scholar]
  106. 106.
    Agnese R et al. Phys. Rev. Lett. 121:5051301 2018.)
    [Google Scholar]
  107. 107.
    Bardeen J, Cooper LN, Schrieffer JR. Phys. Rev. 108:51175 1957.)
    [Google Scholar]
  108. 108.
    Ullom JN, Fisher PA, Nahum M Phys. Rev. B 58:138225 1998.)
    [Google Scholar]
  109. 109.
    Lanou RE, Maris HJ, Seidel GM. Phys. Rev. Lett. 58:232498 1987.)
    [Google Scholar]
  110. 110.
    Maris HJ, Seidel GM, Stein D. Phys. Rev. Lett. 119:18181303 2017.)
    [Google Scholar]
  111. 111.
    Hertel SA et al. Phys. Rev. D 100:9092007 2019.)
    [Google Scholar]
  112. 112.
    Liao J et al. arXiv:2103.02161 [astro-ph.IM] 2021.)
  113. 113.
    Hochberg Y et al. Phys. Rev. D 97:1015004 2018.)
    [Google Scholar]
  114. 114.
    Geilhufe RM, Kahlhoefer F, Winkler MW. Phys. Rev. D 101:5055005 2020.)
    [Google Scholar]
  115. 115.
    Trickle T, Zhang Z, Zurek KM. Phys. Rev. Lett. 124:20201801 2020.)
    [Google Scholar]
  116. 116.
    Caves CM. Phys. Rev. D 26:1817 1982.)
    [Google Scholar]
  117. 117.
    Mück M et al. Appl. Phys. Lett. 72:222885 1998.)
    [Google Scholar]
  118. 118.
    Siddiqi I et al. Phys. Rev. Lett. 93:20207002 2004.)
    [Google Scholar]
  119. 119.
    Castellanos-Beltran MA, Lehnert KW. Appl. Phys. Lett. 91:8083509 2007.)
    [Google Scholar]
  120. 120.
    Macklin C et al. Science 350:6258307 2015.)
    [Google Scholar]
  121. 121.
    Eom BH, Day PK, Leduc HG, Zmuidzinas J. Nat. Phys. 8:623 2012.)
    [Google Scholar]
  122. 122.
    Chaudhuri S et al. Appl. Phys. Lett. 110:152601 2017.)
    [Google Scholar]
  123. 123.
    Vissers MR et al. Appl. Phys. Lett. 108:1012601 2016.)
    [Google Scholar]
  124. 124.
    Zobrist N et al. Appl. Phys. Lett. 115:4042601 2019.)
    [Google Scholar]
  125. 125.
    Castellanos-Beltran MA, Irwin KD, Hilton GC, Vale LR, Lehnert KW. Nat. Phys. 4:929 2008.)
    [Google Scholar]
  126. 126.
    Malnou M et al. Phys. Rev. X 9:2021023 2019.)
    [Google Scholar]
  127. 127.
    Shu S et al. Phys. Rev. Res. 3:2023184 2021.)
    [Google Scholar]
  128. 128.
    Aasi J et al. Nat. Photonics 7:8613 2013.)
    [Google Scholar]
  129. 129.
    Dixit AV et al. Phys. Rev. Lett. 126:14141302 2021.)
    [Google Scholar]
  130. 130.
    Chang Y-Y et al. J. Low Temp. Phys. 193:5–61199 2018.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102020-112133
Loading
/content/journals/10.1146/annurev-nucl-102020-112133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error