1932

Abstract

γ-Ray spectroscopy continues to be an important tool for the study of nuclei. Excitation energies can be measured directly and in model-independent ways, and thus are among the key observables that can guide our understanding of atomic nuclei. With the availability of short-lived rare-isotope beams, the development of position sensitivity of γ-ray detection systems has been crucial in combating the Doppler broadening encountered for the energies of γ-rays emitted in flight, which are necessary to obtain good energy resolution while maintaining high efficiency. The advanced γ-ray tracking array GRETINA began its science mission at the National Superconducting Cyclotron Laboratory (NSCL), where rare-isotope beams are produced at velocities exceeding 30% of the speed of light. With selected examples from nuclear structure physics and nuclear astrophysics, we show the breadth and reach of the science program afforded by GRETINA and provide an outlook for what can be accomplished with the full 4π array GRETA at the Facility for Rare Isotope Beams (FRIB).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102115-044834
2016-10-19
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/nucl/66/1/annurev-nucl-102115-044834.html?itemId=/content/journals/10.1146/annurev-nucl-102115-044834&mimeType=html&fmt=ahah

Literature Cited

  1. Morrissey DJ, Sherrill BM. 1.  Philos. Trans. R. Soc. A 356:1985 1998. [Google Scholar]
  2. Morrissey D. 2.  et al. Nucl. Instrum. Methods B 204:90 2003. [Google Scholar]
  3. Gade A, Glasmacher T. 3.  Prog. Part. Nucl. Phys. 60:161 2008. [Google Scholar]
  4. Hansen PG, Tostevin JA. 4.  Annu. Rev. Nucl. Part. Sci. 53:219 2003. [Google Scholar]
  5. Gade A. 5.  et al. Phys. Rev. C 77:044306 2008. [Google Scholar]
  6. Iwasaki H. 6.  et al. Nucl. Instrum. Methods A 806:123 2016. [Google Scholar]
  7. Bazin D. 7.  et al. Nucl. Instrum. Methods B 204:629 2003. [Google Scholar]
  8. Sorlin O, Porquet MG. 8.  Prog. Part. Nucl. Phys. 61:602 2008. [Google Scholar]
  9. Gade A. 9.  Eur. Phys. J. A 51:118 2015. [Google Scholar]
  10. Dewald A, Möller O, Petkov P. 10.  Prog. Part. Nucl. Phys. 67:786 2012. [Google Scholar]
  11. Mayer MG. 11.  Phys. Rev. 74:235 1948. [Google Scholar]
  12. Mayer MG. 12.  Phys. Rev. 75:1969 1949. [Google Scholar]
  13. Haxel O, Jensen JHD, Suess HE. 13.  Phys. Rev. 75:1766 1949. [Google Scholar]
  14. Holt JD, Otsuka T, Schwenk A, Suzuki T. 14.  J. Phys. G 39:085111 2012. [Google Scholar]
  15. Stroberg SR. 15.  et al. Phys. Rev. C 90:034301 2014. [Google Scholar]
  16. Otsuka T. 16.  et al. Phys. Rev. Lett. 87:082502 2001. [Google Scholar]
  17. Otsuka T. 17.  et al. Phys. Rev. Lett. 95:232502 2005. [Google Scholar]
  18. Stroberg SR. 18.  et al. Phys. Rev. C 91:041302 2015. [Google Scholar]
  19. Gade A. 19.  et al. Phys. Rev. Lett. 112:112503 2014. [Google Scholar]
  20. Sorlin O. 20.  et al. Eur. Phys. J. A 16:55 2003. [Google Scholar]
  21. Adrich P. 21.  et al. Phys. Rev. C 77:054306 2008. [Google Scholar]
  22. Gade A. 22.  et al. Phys. Rev. C 81:051304R 2010. [Google Scholar]
  23. Tarasov OB. 23.  et al. Phys. Rev. Lett. 102:142501 2009. [Google Scholar]
  24. Meng J. 24.  et al. Phys. Rev. C 65:041302 2002. [Google Scholar]
  25. Lenzi SM, Nowacki F, Poves A, Sieja K. 25.  Phys. Rev. C 82:054301 2010. [Google Scholar]
  26. Hagen G. 26.  et al. Phys. Rev. Lett. 109:032502 2012. [Google Scholar]
  27. Erler J. 27.  et al. Nature 486:509 2012. [Google Scholar]
  28. Bouchez E. 28.  et al. Phys. Rev. Lett. 90:082502 2003. [Google Scholar]
  29. Fischer SM, Lister CJ, Balamuth DP. 29.  Phys. Rev. C 67:064318 2003. [Google Scholar]
  30. Gade A. 30.  et al. Phys. Rev. Lett. 95:022502 2005. [Google Scholar]
  31. Starosta K. 31.  et al. Phys. Rev. Lett. 99:042503 2007. [Google Scholar]
  32. Obertelli A. 32.  et al. Phys. Rev. C 80:031304 2009. [Google Scholar]
  33. Lemasson A. 33.  et al. Phys. Rev. C 85:041303 2012. [Google Scholar]
  34. Nichols A. 34.  et al. Phys. Lett. B 733:52 2014. [Google Scholar]
  35. de Angelis G. 35.  et al. Phys. Lett. B 415:217 1997. [Google Scholar]
  36. Iwasaki H. 36.  et al. Phys. Rev. Lett. 112:142502 2014. [Google Scholar]
  37. Whitmore K. 37.  et al. Phys. Rev. C 91:041303 2015. [Google Scholar]
  38. Hansen PG, Jonson B. 38.  Europhys. Lett. 4:409 1987. [Google Scholar]
  39. Aumann T, Nakamura T. 39.  Phys. Scr. 2013:014012 2013. [Google Scholar]
  40. Geithner W. 40.  et al. Phys. Rev. Lett. 83:3792 1999. [Google Scholar]
  41. Takamine A. 41.  et al. Phys. Rev. Lett. 112:162502 2014. [Google Scholar]
  42. Bertulani CA, Gade A. 42.  Phys. Rep. 485:195 2010. [Google Scholar]
  43. Wallace RK, Woosley SE. 43.  Astrophys. J. 45:389 1981. [Google Scholar]
  44. Schatz H. 44.  et al. Phys. Rep. 294:167 1998. [Google Scholar]
  45. Heger A, Cumming A, Galloway DK, Woosley SE. 45.  Astrophys. J. Lett. 671:L141 2007. [Google Scholar]
  46. Özel F. 46.  Nature 441:1115 2006. [Google Scholar]
  47. Özel F, Gould A, Güver T. 47.  Astrophys. J. 748:5 2012. [Google Scholar]
  48. Langer C. 48.  et al. Phys. Rev. Lett. 113:032502 2014. [Google Scholar]
  49. Gupta S. 49.  et al. Astrophys. J. 662:1188 2007. [Google Scholar]
  50. Noji S. 50.  et al. Phys. Rev. Lett. 112:252501 2014. [Google Scholar]
  51. Langanke K, Martínez-Pinedo G. 51.  Rev. Mod. Phys. 75:819 2003. [Google Scholar]
  52. Schatz H. 52.  et al. Nature 505:62 2014. [Google Scholar]
  53. Perdikakis G. 53.  et al. Phys. Rev. C 83:054614 2011. [Google Scholar]
  54. Noji S. 54.  et al. Phys. Rev. C 92:024312 2015. [Google Scholar]
  55. Savard G. 55.  et al. Phys. Soc. Jpn. Conf. Proc. 6:010008 2015. [Google Scholar]
  56. Savard G. 56.  et al. Nucl. Instrum. Methods B 266:4086 2015. [Google Scholar]
  57. Nazarewicz W. 57.  et al. Nucl. Phys. A 429:269 1984. [Google Scholar]
  58. Butler PA, Nazarewicz W. 58.  Rev. Mod. Phys. 68:349 1996. [Google Scholar]
  59. Simon MW, Cline D, Wu CY, Gray RW. 59.  Nucl. Instrum. Methods A 452:205 2000. [Google Scholar]
  60. Bucher B. 60.  et al. Phys. Rev. Lett. 116:112503 2016. [Google Scholar]
  61. 61. GRETINA Users Exec. Comm., GRETINA Advis. Comm., Phys. Work. Group The Gamma-Ray Energy Tracking Array: GRETA LBNL report 1004136. Presented at Nucl. Astrophys. Low Energy Nucl. Phys. Town Meet., Austin, TX. http://greta.lbl.gov/documents/GRETA-WhitePaper.pdf 2014. [Google Scholar]
  62. 62. Nucl. Sci. Advis. Comm Reaching for the horizon: the 2015 long range plan for nuclear science. Report, US Dep. Energy/Nat. Sci. Found., Washington, DC. http://science.energy.gov/∼/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf 2015. [Google Scholar]
  63. Forssen C. 63.  et al. Phys. Scr. T152:014022 2013. [Google Scholar]
  64. 64. NSCL (National Superconducting Cyclotron Laboratory) HRS: a high rigidity spectrometer for FRIB Report, NSCL, East Lansing, MI. https://people.nscl.msu.edu/∼zegers/HRS_draft.pdf 2014. [Google Scholar]
  65. Bohr A, Mottelson B. 65.  Nuclear Structure New York: Benjamin 1975. [Google Scholar]
  66. Engel J, Ramsey-Musolf M, van Kolck U. 66.  Prog. Part. Nucl. Phys. 71:21 2013. [Google Scholar]
  67. Pospelov M, Ritz A. 67.  Ann. Phys. 318:119 2005. [Google Scholar]
  68. Dobaczewski J, Engel J. 68.  Phys. Rev. Lett. 94:232502 2005. [Google Scholar]
  69. Spevak V, Auerbach N, Flambaum VV. 69.  Phys. Rev. C 56:1357 1997. [Google Scholar]
  70. Griffith WC. 70.  et al. Phys. Rev. Lett. 102:101601 2009. [Google Scholar]
  71. Flambaum VV. 71.  Phys. Rev. A 77:024501 2008. [Google Scholar]
  72. Eberth J, Simpson J. 72.  Prog. Part. Nucl. Phys. 60:283 2008. [Google Scholar]
  73. Lee IY. 73.  Nucl. Phys. A 520:641 1990. [Google Scholar]
  74. Simpson J. 74.  Z. Phys. Hadrons Nucl. 358:138 1997. [Google Scholar]
  75. Lee IY. 75.  Nucl. Instrum. Methods A 422:195 1999. [Google Scholar]
  76. Akkoyun S. 76.  et al. Nucl. Instrum. Methods A 668:26 2012. [Google Scholar]
  77. Schmid G. 77.  et al. Nucl. Instrum. Methods A 430:69 1999. [Google Scholar]
  78. Deleplanque MA. 78.  et al. Nucl. Instrum. Methods A 430:292 1999. [Google Scholar]
  79. Paschalis S. 79.  et al. Nucl. Instrum. Methods Phys. A 709:44 2013. [Google Scholar]
  80. Knoll GF. 80.  Radiation Detection and Measurement New York: Wiley, 4th. 2010. [Google Scholar]
  81. Vetter K. 81.  et al. Nucl. Instrum. Methods A 452:223 2000. [Google Scholar]
  82. Cromaz M. 82.  et al. Nucl. Instrum. Methods A 597:233 2008. [Google Scholar]
  83. Anderson J. 83.  et al. Nucl. Sci. IEEE Trans. 56:258 2009. [Google Scholar]
/content/journals/10.1146/annurev-nucl-102115-044834
Loading
/content/journals/10.1146/annurev-nucl-102115-044834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error