1932

Abstract

Exotic decays of the Standard Model (SM)-like Higgs boson into beyond-the-SM particles are predicted in a wide range of well-motivated theories. The enormous samples of Higgs bosons that have been and will be produced at the Large Hadron Collider thus constitute one of the key discovery opportunities at that facility, particularly in the upcoming high-statistics, high-luminosity run. Here we review recent theoretical work on models that predict or accommodate exotic Higgs decays, survey the status of current experimental searches, and look forward to future capabilities at dedicated Higgs factories and beyond.

Keyword(s): BSMexotic decaysfuture collidersHiggsLHCLLP
Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102319-024147
2022-09-26
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-102319-024147.html?itemId=/content/journals/10.1146/annurev-nucl-102319-024147&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 716:1 2012.)
    [Google Scholar]
  2. 2. 
    Chatrchyan S et al. (CMS Collab.) J. High Energy Phys. 1306:81 2013.)
    [Google Scholar]
  3. 3. 
    Shrock RE, Suzuki M. Phys. Lett. B 110:250 1982.)
    [Google Scholar]
  4. 4. 
    Curtin D et al. Phys. Rev. D 90:7075004 2014.)
    [Google Scholar]
  5. 5. 
    Arkani-Hamed N, Dimopoulos S J. High Energy Phys. 0506:073 2005.)
    [Google Scholar]
  6. 6. 
    Giudice GF, Romanino A. Nucl. Phys. B 699:65 2004.). Erratum. Nucl. Phys. B 706:487 2005.)
    [Google Scholar]
  7. 7. 
    Arkani-Hamed N, Dimopoulos S, Giudice GF, Romanino A. Nucl. Phys. B 709:3 2005.)
    [Google Scholar]
  8. 8. 
    Mason JD, Morrissey DE, Poland D. Phys. Rev. D 80:115015 2009.)
    [Google Scholar]
  9. 9. 
    Draper P et al. Phys. Rev. Lett. 106:121805 2011.)
    [Google Scholar]
  10. 10. 
    Chacko Z, Goh HS, Harnik R. Phys. Rev. Lett. 96:231802 2006.)
    [Google Scholar]
  11. 11. 
    Burdman G, Chacko Z, Goh HS, Harnik R. J. High Energy Phys. 0702:009 2007.)
    [Google Scholar]
  12. 12. 
    Strassler MJ, Zurek KM. Phys. Lett. B 651:374 2007.)
    [Google Scholar]
  13. 13. 
    Burdman G et al. Phys. Rev. D 91:5055007 2015.)
    [Google Scholar]
  14. 14. 
    Craig N, Katz A, Strassler M, Sundrum R. J. High Energy Phys. 1507:105 2015.)
    [Google Scholar]
  15. 15. 
    Curtin D, Verhaaren CB. J. High Energy Phys. 1512:72 2015.)
    [Google Scholar]
  16. 16. 
    Graham PW, Kaplan DE, Rajendran S. Phys. Rev. Lett. 115:22221801 2015.)
    [Google Scholar]
  17. 17. 
    Flacke T et al. J. High Energy Phys. 1706:50 2017.)
    [Google Scholar]
  18. 18. 
    Fuchs E, Matsedonskyi O, Savoray I, Schlaffer M. J. High Energy Phys. 2104:19 2021.)
    [Google Scholar]
  19. 19. 
    Silveira V, Zee A. Phys. Lett. B 161:136 1985.)
    [Google Scholar]
  20. 20. 
    Bernal N, Chu X. J. Cosmol. Astropart. Phys. 1601:006 2016.)
    [Google Scholar]
  21. 21. 
    ATLAS Collab Combination of searches for invisible Higgs boson decays with the ATLAS experiment Rep. ATLAS-CONF-2020-052, CERN Geneva: 2020.)
    [Google Scholar]
  22. 22. 
    Binder T, Bringmann T, Gustafsson M, Hryczuk A. Phys. Rev. D 96:11115010 2017.). Erratum. Phys. Rev. D 101:099901 2020.)
    [Google Scholar]
  23. 23. 
    Aprile E et al. (XENON Collab.) Phys. Rev. Lett. 121:11111302 2018.)
    [Google Scholar]
  24. 24. 
    Aalbers J et al. (DARWIN Collab.) J. Cosmol. Astropart. Phys. 1611:017 2016.)
    [Google Scholar]
  25. 25. 
    Zhang HG et al. (PandaX Collab.) Sci. China Phys. Mech. Astron. 62:331011 2019.)
    [Google Scholar]
  26. 26. 
    Hardy E. J. High Energy Phys. 1806:43 2018.)
    [Google Scholar]
  27. 27. 
    Bernal N, Cosme C, Tenkanen T, Vaskonen V. Eur. Phys. J. C 79:130 2019.)
    [Google Scholar]
  28. 28. 
    Chanda P, Hamdan S, Unwin J. J. Cosmol. Astropart. Phys. 2001.034 2020.)
    [Google Scholar]
  29. 29. 
    Gross C, Lebedev O, Toma T Phys. Rev. Lett. 119:19191801 2017.)
    [Google Scholar]
  30. 30. 
    Ipek S, McKeen D, Nelson AE. Phys. Rev. D 90:5055021 2014.)
    [Google Scholar]
  31. 31. 
    Albert A et al. Astrophys. J. 834:2110 2017.)
    [Google Scholar]
  32. 32. 
    Ackermann M et al. Astrophys. J. 840:143 2017.)
    [Google Scholar]
  33. 33. 
    Robens T. Symmetry 13:122341 2021.)
    [Google Scholar]
  34. 34. 
    Barman RK et al. Phys. Rev. D 103:1015029 2021.)
    [Google Scholar]
  35. 35. 
    Pospelov M, Ritz A, Voloshin MB. Phys. Lett. B 662:53 2008.)
    [Google Scholar]
  36. 36. 
    Martin A, Shelton J, Unwin J. Phys. Rev. D 90:10103513 2014.)
    [Google Scholar]
  37. 37. 
    Evans JA, Gori S, Shelton J. J. High Energy Phys. 1802:100 2018.)
    [Google Scholar]
  38. 38. 
    Bell NF, Cai Y, Leane RK. J. Cosmol. Astropart. Phys. 1608:001 2016.)
    [Google Scholar]
  39. 39. 
    Arcadi G, Djouadi A, Raidal M. Phys. Rep. 842:1 2020.)
    [Google Scholar]
  40. 40. 
    Lebedev O. Prog. Part. Nucl. Phys. 120:103881 2021.)
    [Google Scholar]
  41. 41. 
    Caprini C et al. J. Cosmol. Astropart. Phys. 2003.024 2020.)
    [Google Scholar]
  42. 42. 
    Kajantie K, Laine M, Rummukainen K, Shaposhnikov ME. Phys. Rev. Lett. 77:2887 1996.)
    [Google Scholar]
  43. 43. 
    Csikor F, Fodor Z, Heitger J. Phys. Rev. Lett. 82:21 1999.)
    [Google Scholar]
  44. 44. 
    Profumo S, Ramsey-Musolf MJ, Shaughnessy G J. High Energy Phys. 0708:010 2007.)
    [Google Scholar]
  45. 45. 
    Ghorbani K, Ghorbani PH. J. Phys. G 47:1015201 2020.)
    [Google Scholar]
  46. 46. 
    Kozaczuk J, Ramsey-Musolf MJ, Shelton J Phys. Rev. D 101:11115035 2020.)
    [Google Scholar]
  47. 47. 
    Carena M, Liu Z, Wang Y J. High Energy Phys. 2008.107 2020.)
    [Google Scholar]
  48. 48. 
    Robens T, Stefaniak T. Eur. Phys. J. C 75:104 2015.)
    [Google Scholar]
  49. 49. 
    Gershtein Y, Knapen S, Redigolo D. Phys. Lett. B 823:136758 2021.)
    [Google Scholar]
  50. 50. 
    de Florian D et al., eds. (LHC Higgs Cross Section Working Group.) arXiv:1610.07922 [hep-ph] 2016.)
  51. 51. 
    Winkler MW. Phys. Rev. D 99:1015018 2019.)
    [Google Scholar]
  52. 52. 
    Dolan MJ, Kahlhoefer F, McCabe C, Schmidt-Hoberg K. J. High Energy Phys. 1503:171 2015.). Erratum. J. High Energy Phys. 1507:103 2015.)
    [Google Scholar]
  53. 53. 
    Haisch U, Kamenik JF, Malinauskas A, Spira M. J. High Energy Phys. 1803:178 2018.)
    [Google Scholar]
  54. 54. 
    Craig N, Galloway J, Thomas S. arXiv:1305.2424 [hep-ph] 2013.)
  55. 55. 
    Brivio I et al. Eur. Phys. J. C 77:8572 2017.)
    [Google Scholar]
  56. 56. 
    Dobrescu BA, Landsberg GL, Matchev KT. Phys. Rev. D 63:075003 2001.)
    [Google Scholar]
  57. 57. 
    Dobrescu BA, Matchev KT. J. High Energy Phys. 0009:031 2000.)
    [Google Scholar]
  58. 58. 
    Bauer M, Neubert M, Thamm A. Phys. Rev. Lett. 119:3031802 2017.)
    [Google Scholar]
  59. 59. 
    Bauer M, Neubert M, Thamm A. J. High Energy Phys. 1712:44 2017.)
    [Google Scholar]
  60. 60. 
    Sheff B, Steinberg N, Wells JD. Phys. Rev. D 104:3036009 2021.)
    [Google Scholar]
  61. 61. 
    Draper P, McKeen D. Phys. Rev. D 85:115023 2012.)
    [Google Scholar]
  62. 62. 
    Ellis SD, Roy TS, Scholtz J. Phys. Rev. D 87:1014015 2013.)
    [Google Scholar]
  63. 63. 
    Davoudiasl H, Giardino PP, Neil ET, Rinaldi E. Phys. Rev. D 96:11115003 2017.)
    [Google Scholar]
  64. 64. 
    Davoudiasl H, Marcarelli R, Miesch N, Neil ET. Phys. Rev. D 104:5055022 2021.)
    [Google Scholar]
  65. 65. 
    Evans JA, Tanedo P, Zakeri M. J. High Energy Phys. 2001:28 2020.)
    [Google Scholar]
  66. 66. 
    Curtin D, Essig R, Gori S, Shelton J. J. High Energy Phys. 1502:157 2015.)
    [Google Scholar]
  67. 67. 
    Schabinger RM, Wells JD. Phys. Rev. D 72:093007 2005.)
    [Google Scholar]
  68. 68. 
    Gopalakrishna S, Jung S, Wells JD Phys. Rev. D 78:055002 2008.)
    [Google Scholar]
  69. 69. 
    Izaguirre E, Stolarski D. Phys. Rev. Lett. 121:22221803 2018.)
    [Google Scholar]
  70. 70. 
    Davoudiasl H, Lee HS, Lewis I, Marciano WJ Phys. Rev. D 88:1015022 2013.)
    [Google Scholar]
  71. 71. 
    Lu Q, Morrissey DE, Wijangco AM. J. High Energy Phys. 1706:138 2017.)
    [Google Scholar]
  72. 72. 
    Falkowski A, Ruderman JT, Volansky T, Zupan J. J. High Energy Phys. 1005:77 2010.)
    [Google Scholar]
  73. 73. 
    Falkowski A, Ruderman JT, Volansky T, Zupan J. Phys. Rev. Lett. 105:241801 2010.)
    [Google Scholar]
  74. 74. 
    Chan YF, Low M, Morrissey DE, Spray AP. J. High Energy Phys. 1205:155 2012.)
    [Google Scholar]
  75. 75. 
    ATLAS Collab Combined measurements of Higgs boson production and decay using up to 139 fb1of proton-proton collision data at= 13 TeV collected with the ATLAS experiment Rep. ATLAS-CONF-2021-053, CERN Geneva: 2021.)
    [Google Scholar]
  76. 76. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 102:11112006 2020.)
    [Google Scholar]
  77. 77. 
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 800:135087 2020.)
    [Google Scholar]
  78. 78. 
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 796:131 2019.)
    [Google Scholar]
  79. 79. 
    Tumasyan A et al. (CMS Collab.) Eur. Phys. J. C 82:290 2022.)
    [Google Scholar]
  80. 80. 
    Aad G et al. (ATLAS Collab.) arXiv:2110.13673 [hep-ex] 2021.)
  81. 81. 
    Abazov VM et al. (D0 Collab.) Phys. Rev. Lett. 103:061801 2009.)
    [Google Scholar]
  82. 82. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 92:5052002 2015.)
    [Google Scholar]
  83. 83. 
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2008:139 2020.)
    [Google Scholar]
  84. 84. 
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1811:18 2018.)
    [Google Scholar]
  85. 85. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 105:1012006 2022.)
    [Google Scholar]
  86. 86. 
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 795:398 2019.)
    [Google Scholar]
  87. 87. 
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 785:462 2018.)
    [Google Scholar]
  88. 88. 
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1810:31 2018.)
    [Google Scholar]
  89. 89. 
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 76:4210 2016.)
    [Google Scholar]
  90. 90. 
    CMS Collab Search for exotic decay of the Higgs boson into two light pseudoscalars with four photons in the final state at= 13 TeV Rep. CMS-PAS-HIG-21-003, CERN Geneva: 2021.)
    [Google Scholar]
  91. 91. 
    Aaboud M et al. (ATLAS Collab.) Phys. Lett. B 782:750 2018.)
    [Google Scholar]
  92. 92. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 125:22221802 2020.)
    [Google Scholar]
  93. 93. 
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1806:166 2018.)
    [Google Scholar]
  94. 94. 
    Aaij R et al. (LHCb Collab.) Eur. Phys. J. C 77:12812 2017.)
    [Google Scholar]
  95. 95. 
    Tumasyan A et al. (CMS Collab.) J. High Energy Phys. 2203:160 2022.)
    [Google Scholar]
  96. 96. 
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2111:229 2021.)
    [Google Scholar]
  97. 97. 
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. D 104:1012015 2021.)
    [Google Scholar]
  98. 98. 
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 79:6481 2019.)
    [Google Scholar]
  99. 99. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 101:5052013 2020.)
    [Google Scholar]
  100. 100. 
    Tumasyan A et al. (CMS Collab.) Phys. Rev. Lett. 127:26261804 2021.)
    [Google Scholar]
  101. 101. 
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. D 99:5052005 2019.)
    [Google Scholar]
  102. 102. 
    ATLAS Collab Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at= 13 TeV Rep. ATLAS-CONF-2021-032, CERN Geneva: 2021.)
    [Google Scholar]
  103. 103. 
    Tumasyan A et al. (CMS Collab.) Eur. Phys. J. C 82:153 2022.)
    [Google Scholar]
  104. 104. 
    Tumasyan A et al. (CMS Collab.) J. High Energy Phys. 2204:62 2022.)
    [Google Scholar]
  105. 105. 
    CMS Collab Search for long-lived particles decaying to a pair of muons in proton-proton collisions at= 13 TeV Rep. CMS-PAS-EXO-21-006, CERN Geneva: 2022.)
    [Google Scholar]
  106. 106. 
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. D 99:1012001 2019.)
    [Google Scholar]
  107. 107. 
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 80:5450 2020.)
    [Google Scholar]
  108. 108. 
    ATLAS Collab Reinterpretation of the ATLAS search for displaced hadronic jets with the RECAST framework Rep. ATL-PHYS-PUB-2020-007 Geneva, CERN: 2020.)
    [Google Scholar]
  109. 109. 
    ATLAS Collab Performance of the reconstruction of large impact parameter tracks in the ATLAS inner detector Rep. ATL-PHYS-PUB-2017-014, CERN Geneva: 2017.)
    [Google Scholar]
  110. 110. 
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1910:139 2019.)
    [Google Scholar]
  111. 111. 
    ATLAS Collab Combination of searches for invisible Higgs boson decays with the ATLAS experiment Rep. ATLAS-CONF-2020-052, CERN Geneva: 2020.)
    [Google Scholar]
  112. 112. 
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 829:137066 2022.)
    [Google Scholar]
  113. 113. 
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 81:113 2021.). Erratum. Eur. Phys. J. C 81:333 2021.)
    [Google Scholar]
  114. 114. 
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2103:11 2021.)
    [Google Scholar]
  115. 115. 
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 82:2105 2022.)
    [Google Scholar]
  116. 116. 
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 753:363 2016.)
    [Google Scholar]
  117. 117. 
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2201:63 2022.)
    [Google Scholar]
  118. 118. 
    Aad G et al. (ATLAS Collab.) arXiv:2202.07953 [hep-ex] 2022.)
  119. 119. 
    Tumasyan A et al. (CMS Collab.) arXiv:2201.11585 [hep-ex] 2022.)
  120. 120. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 103:11112006 2021.)
    [Google Scholar]
  121. 121. 
    Tumasyan A et al. (CMS Collab.) J. High Energy Phys. 2111:153 2021.)
    [Google Scholar]
  122. 122. 
    CMS Collab First constraints on invisible Higgs boson decays usingproduction at= 13 TeV Rep. CMS-PAS-HIG-18-008, CERN Geneva: 2019.)
    [Google Scholar]
  123. 123. 
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 793:520 2019.)
    [Google Scholar]
  124. 124. 
    Abdallah W et al. (LHC Reinterpretation Forum.) SciPost Phys. 9:2022 2020.)
    [Google Scholar]
  125. 125. 
    Cranmer K, Yavin I. J. High Energy Phys. 1104:38 2011.)
    [Google Scholar]
  126. 126. 
    CMS Collab Projection of searches for exotic Higgs boson decays to light pseudoscalars for the High-Luminosity LHC Rep. CMS-PAS-FTR-18-035, CERN Geneva: 2019.)
    [Google Scholar]
  127. 127. 
    de Blas J et al. J. High Energy Phys. 2001:139 2020.)
    [Google Scholar]
  128. 128. 
    CMS Collab The Phase-2 Upgrade of the CMS Level-1 Trigger Rep. CERN-LHCC-2020-004, CMS-TDR-021, CERN Geneva: 2020.)
    [Google Scholar]
  129. 129. 
    ATLAS Collab Technical design report for the Phase-II upgrade of the ATLAS TDAQ system Rep. CERN-LHCC-2017-020, ATLAS-TDR-029, CERN Geneva: 2017.)
    [Google Scholar]
  130. 130. 
    CMS Collab Search sensitivity for dark photons decaying to displaced muons with CMS at the high-luminosity LHC Rep. CMS-PAS-FTR-18-002, CERN Geneva: 2018.)
    [Google Scholar]
  131. 131. 
    Gligorov VV, Knapen S, Papucci M, Robinson DJ. Phys. Rev. D 97:1015023 2018.)
    [Google Scholar]
  132. 132. 
    Aielli G et al. Eur. Phys. J. C 80:121177 2020.)
    [Google Scholar]
  133. 133. 
    Chou JP, Curtin D, Lubatti HJ. Phys. Lett. B 767:29 2017.)
    [Google Scholar]
  134. 134. 
    Alpigiani C et al. arXiv:1811.00927 [physics.ins-det] 2018.)
  135. 135. 
    Curtin D et al. Rep. Prog. Phys. 82:11116201 2019.)
    [Google Scholar]
  136. 136. 
    Feng JL, Galon I, Kling F, Trojanowski S. Phys. Rev. D 97:3035001 2018.)
    [Google Scholar]
  137. 137. 
    Ariga A et al. Phys. Rev. D 99:9095011 2019.)
    [Google Scholar]
  138. 138. 
    Beacham J et al. J. Phys. G 47:1010501 2020.)
    [Google Scholar]
  139. 139. 
    Abada A et al. (FCC Collab.) Eur. Phys. J. C 79:6474 2019.)
    [Google Scholar]
  140. 140. 
    CEPC Study Group. arXiv:1811.10545 [hep-ex] 2018.)
  141. 141. 
    Bambade P et al. arXiv:1903.01629 [hep-ex] 2019.)
  142. 142. 
    Fujii K et al. (LCC Physics Working Group.) arXiv:1908.11299 [hep-ex] 2019.)
  143. 143. 
    Liu Z, Wang LT, Zhang H. Chin. Phys. C 41:6063102 2017.)
    [Google Scholar]
  144. 144. 
    Alipour-Fard S, Craig N, Jiang M, Koren S Chin. Phys. C 43:5053101 2019.)
    [Google Scholar]
  145. 145. 
    Abada A et al. Eur. Phys. J. ST 228:4755 2019.)
    [Google Scholar]
  146. 146. 
    Al Ali H et al. arXiv:2103.14043 [hep-ph] 2021.)
  147. 147. 
    Franceschini R, Greco M. Symmetry 13:5851 2021.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102319-024147
Loading
/content/journals/10.1146/annurev-nucl-102319-024147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error