1932

Abstract

The Trojan Horse Method (THM) represents an indirect path to determine the bare nucleus astrophysical -factor for reactions among charged particles at astrophysical energies. This is achieved by measuring the quasi-free cross section of a suitable three-body process. The method is also suited to study neutron-induced reactions, especially in the case of radioactive ion beams. A comprehensive review of the theoretical as well as experimental features behind the THM is presented here. An overview is given of some recent applications to demonstrate the method's practical use for reactions that have a great impact on selected astrophysical scenarios.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-033642
2021-09-21
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-033642.html?itemId=/content/journals/10.1146/annurev-nucl-102419-033642&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Assenbaum HJ et al. Z. Phys. A 327:461 1987.
  2. 2. 
    Strieder F, et al. Naturwissenschaften 88:461 2001.
  3. 3. 
    Fiorentini G, et al. Z. Phys. A 350:289 1995.
  4. 4. 
    Spitaleri C, et al. Nucl. Phys. A 719:C99 2003.
  5. 5. 
    Tumino A, et al. Few-Body Syst. 54:869 2013.
  6. 6. 
    Tribble R, et al. Rep. Prog. Phys. 77:106901 2014.
  7. 7. 
    Tumino A, et al. Few-Body Syst. 54:745 2013.
  8. 8. 
    Spitaleri C, et al. Eur. Phys. J. A 52:77 2016.
  9. 9. 
    Spitaleri C, et al. Eur. Phys. J. A 55:161 2019.
  10. 10. 
    Pizzone RG, et al. Eur. Phys. J. A 56:283 2020.
  11. 11. 
    Rapisarda GG, et al. Eur. Phys. J. A 54:189 2018.
  12. 12. 
    D'Agata G, et al. Astrophys. J. 860:61 2018.
  13. 13. 
    Lamia L, et al. Astrophys. J. 811:99 2015.
  14. 14. 
    Tumino A, et al. Nature 557:687 2018.
  15. 15. 
    Baur G. Phys. Lett. B 178:135 1986.
  16. 16. 
    Baur G. Nucl. Energy 25:183 1987.
  17. 17. 
    Shapiro IS. Sov. Phys. Usp. 10:515 1968.
  18. 18. 
    Tumino A, et al. Phys. Rev. C 67:065803 2003.
  19. 19. 
    La Cognata M, et al. Astrophys. J. 708:796 2010.
  20. 20. 
    Thompson IJ. Comp. Phys. Rep. 7:167 1987.
  21. 21. 
    Perey CM, Perey FG. At. Data Nucl. Data Tables 17:1 1976.
  22. 22. 
    Newton RG. Scattering Theory of Waves and Particles Berlin: Springer 1982.
  23. 23. 
    Typel S. Eur. Phys. J. A 56:286 2020.
  24. 24. 
    Jain M, Roos PG, Pugh HG, Holmgren HD. Nucl. Phys. A 153:49 1970.
  25. 25. 
    Typel S, Wolter HH. Few-Body Syst. 29:75 2000.
  26. 26. 
    Typel S, Baur G. Ann. Phys. 305:228 2003.
  27. 27. 
    Aliotta M, et al. AIP Conf. Proc. 561:116 2001.
  28. 28. 
    Spitaleri C et al.Phys. Rev. C 63:055801 2001.
  29. 29. 
    Pellegriti MG, et al. Nucl. Phys. A 688:543 2001.
  30. 30. 
    Musumarra A, et al. Phys. Rev. C 64:068801 2001.
  31. 31. 
    Tumino A, et al. Nucl. Phys. A 718:499 2003.
  32. 32. 
    Pizzone RG, et al. Nucl. Phys. A 718:496 2003.
  33. 33. 
    Kadyrov AS, Bray I, Mukhamedzhanov AM, Stelbovics T. Ann. Phys. 324:1516 2009.
  34. 34. 
    Mukhamedzhanov AM. Phys. Rev. C 84:04461 2011.
  35. 35. 
    Mukhamedzhanov AM, Kadyrov AS, Pang DY. Eur. Phys. J. A 56:233 2020.
  36. 36. 
    Lane AM, Thomas RG. Rev. Mod. Phys. 30:257 1958.
  37. 37. 
    Hussein MS. Eur. Phys. J. A 53:100 2017.
  38. 38. 
    Bertulani CA, Hussein MS, Typel S. Phys. Lett. B 776:217 2018.
  39. 39. 
    Faddeev LD. Sov. Phys. JETP 12:1014 1961.
  40. 40. 
    Mahaux C, Weidenmüller HA. Shell-Model Approach to Nuclear Reactions Amsterdam: North-Holland 1969.
  41. 41. 
    La Cognata M, et al. Astrophys. J. 777:143 2013.
  42. 42. 
    La Cognata M, et al. Astrophys. J. 739:L54 2011.
  43. 43. 
    Mukhamedzhanov AM, et al. J. Phys. G 35:014016 2008.
  44. 44. 
    La Cognata M, et al. Phys. Rev. Lett. 109:232701 2012.
  45. 45. 
    Mukhamedzhanov AM. Phys. Rev. C 84:044616 2011.
  46. 46. 
    La Cognata M, et al. Astrophys. J. 723:1512 2010.
  47. 47. 
    Starrfield S, Iliadis C, Hix WR. Publ. Astron. Soc. Pac. 128:051001 2016.
  48. 48. 
    Starrfield S, Iliadis C, Hix WR. Thermonuclear processes. Classical Novae MF Bode, A Evans 77–101 Cambridge, UK: Cambridge Univ. Press. , 2nd ed.. ( 2008.
    [Google Scholar]
  49. 49. 
    José J, Shore SN. Observational mysteries and theoretical challenges for abundance studies. Classical Novae MF Bode, A Evans 121–40 Cambridge, UK: Cambridge Univ. Press. , 2nd ed.. ( 2008.
    [Google Scholar]
  50. 50. 
    José J. Stellar Explosions: Hydrodynamics and Nucleosynthesis Boca Raton, FL: CRC/Taylor and Francis 2016.
  51. 51. 
    Hernanz M, et al. Astrophys. J. 526:L97 1999.
  52. 52. 
    Hernanz M, José J Updated prospects for detectability of classical novae with INTEGRAL. Proceedings of the 5th INTEGRAL Workshop on the INTEGRAL Universe V Schönfelder, G Lichti, C Winkler 95–98 Noordwijk, Neth: Eur. Space Agency 2004.
    [Google Scholar]
  53. 53. 
    Rehm KE, et al. Phys. Rev. C 52:R460 1995.
  54. 54. 
    Rehm KE, et al. Phys. Rev. C 53:1950 1996.
  55. 55. 
    Graulich JS, et al. Phys. Rev. C 63:011302 2001.
  56. 56. 
    Bardayan DW, et al. Phys. Rev. C 63:065802 2001.
  57. 57. 
    Murphy ASJ, et al. Phys. Rev. C 79:058801 2009.
  58. 58. 
    de Sereville N, et al. Phys. Rev. C 79:015801 2009.
  59. 59. 
    Bardayan DW, et al. Phys. Rev. Lett. 89:262501 2002.
  60. 60. 
    Beer CE, et al. Phys. Rev. C 83:042801 2011.
  61. 61. 
    Kozub RL, et al. Phys. Rev. C 71:032801 2005.
  62. 62. 
    La Cognata M, et al. Phys. Rev. C 99:034301 2019.
  63. 63. 
    Dalouzy JC, et al. Phys. Rev. Lett. 102:162503 2009.
  64. 64. 
    Adekola AS, et al. Phys. Rev. C 83:052801 2011.
  65. 65. 
    Bardayan DW, et al. Phys. Lett. B 751:311 2015.
  66. 66. 
    Bardayan DW, et al. Phys. Rev. C 96:055806 2017.
  67. 67. 
    Cherubini S, et al. Phys. Rev. C 92:015805 2015.
  68. 68. 
    Pizzone RG, et al. Eur. Phys. J. A 52:24 2016.
  69. 69. 
    La Cognata M, et al. Astrophys. J. 846:65 2017.
  70. 70. 
    Bardayan DW, Kozub RL, Smith MS. Phys. Rev. C 71:018801 2005.
  71. 71. 
    Cyburt RH, et al. Astrophys. J. Suppl. Ser. 189:240 2010.
  72. 72. 
    José J, Hernanz M. Astrophys. J. 494:680 1998.
  73. 73. 
    Cyburt R, Fields B, Olive K. Rev. Mod. Phys. 88:015004 2016.
  74. 74. 
    Lamia L, et al. Astrophys. J. 768:65 2013.
  75. 75. 
    Tumino A, et al. Phys. Lett. B 700:111 2011.
  76. 76. 
    Tumino A, et al. Astrophys. J. 785:96 2014.
  77. 77. 
    Li C, et al. Phys. Rev. C 92:025805 2015.
  78. 78. 
    La Cognata M, et al. Phys. Rev. C 72:065802 2005.
  79. 79. 
    Lamia L, et al. Astron. Astrophys. 541:A158 2012.
  80. 80. 
    Pizzone RG, et al. Astrophys. J. 786:112 2014.
  81. 81. 
    Hou SQ, et al. Phys. Rev. C 91:055802 2015.
  82. 82. 
    Barbagallo M, et al. Phys. Rev. Lett. 117:152701 2016.
  83. 83. 
    Kawabata T, et al. Phys. Rev. Lett. 118:052701 2017.
  84. 84. 
    Lamia L, et al. Astrophys. J. 850:175 2017.
  85. 85. 
    Lamia L, et al. Astrophys. J. 879:23 2019.
  86. 86. 
    Tumino A, et al. Eur. Phys. J. A 27:243 2006.
  87. 87. 
    Pizzone RG, et al. Phys. Rev. C 83:045801 2011.
  88. 88. 
    Farinon F, et al. Nucl. Instrum. Methods Phys. Res. B 266:4097 2008.
  89. 89. 
    Lamia L, et al. Phys. Rev. C 85:025805 2012.
  90. 90. 
    Mazzocco M, et al. Nucl. Instrum. Methods Phys. Res. B 317:223 2013.
  91. 91. 
    Chadwich MB, et al. Nucl. Data Sheets 112:2887 2011.
  92. 92. 
    Lugaro M, et al. Astrophys. J. 615:934 2004.
  93. 93. 
    Cristallo S, et al. Astron. Astrophys. 570:46 2014.
  94. 94. 
    Ugalde C, et al. Phys. Rev. C 77:035801 2008.
  95. 95. 
    Pizzone RG, et al. Astrophys. J. 836:57 2017.
  96. 96. 
    Pizzone RG, et al. Phys. Rev. C 87:025805 2013.
  97. 97. 
    Lamia L, et al. Nuovo Cim. C 31:423 2008.
  98. 98. 
    Gulino M et al.J. Phys. G 37:125105 2010.
  99. 99. 
    Gulino M, et al. Phys. Rev. C 87:012801 2013.
  100. 100. 
    Guardo GL, et al. Phys. Rev. C 95:025807 2017.
  101. 101. 
    Guardo GL, et al. Eur. Phys. J. A 55:211 2019.
  102. 102. 
    Coon J. Phys. Rev. 80:488 1950.
  103. 103. 
    Batchelor RA, Skyrme THR. Rev. Sci. Instrum. 26:1037 1955.
  104. 104. 
    Gibbons IH, Macklin RL. Phys. Rev. 114:571 1959.
  105. 105. 
    Costello DG, et al. Nucl. Sci. Eng. 39:409 1970.
  106. 106. 
    Drosg M, Otuka N. Evaluation of the absolute angle-dependent differential neutron production cross sections by the reactions 3H(p,n)3He, 1H(t,n)3He, 2H(d,n)3He, 3H(d,n)4He, and 2H(t,n)4He and of the cross sections of their time-reversed counterparts up to 30 MeV and beyond Rep. INDC (AUS)-0019 Int. At. Energy Agency Vienna: 2015.
  107. 107. 
    Brune C, et al. Phys. Rev. C 60:015801 1999.
  108. 108. 
    Adahchour A, Descouvemont P. J. Phys. G 29:395 2003.
  109. 109. 
    Caughlan GR, Fowler WA. At. Data Nucl. Data Tables 40:283 1988.
  110. 110. 
    Pizzone RG, et al. Eur. Phys. J. A 56:199 2020.
  111. 111. 
    García-Berro E, et al. Astrophys. J. 485:765 1997.
  112. 112. 
    Cooper RL, et al. Astrophys. J. 702:660 2009.
  113. 113. 
    Becker HW, Kettner KU, Rolfs C, Trautvetter HP. Z. Phys. A 303:305 1981.
  114. 114. 
    Aguilera EF, et al. Phys. Rev. C 73:064501 2006.
  115. 115. 
    Spillane T, et al. Phys. Rev. Lett. 98:122501 2007.
  116. 116. 
    Mazarakis MG, Stephens WE. Phys. Rev. C 7:1280 1973.
  117. 117. 
    High MD, Cujec B. Nucl. Phys. A 282:181 1977.
  118. 118. 
    Kettner KU, Lorenz-Wirzba H, Rolfs C. Z. Phys. A 298:65 1980.
  119. 119. 
    Patterson JR, et al. Astrophys. J. 157:367 1969.
  120. 120. 
    Barrón-Palos L, et al. Nucl. Phys. A 779:318 2006.
  121. 121. 
    Jiang CL et al.Phys. Rev. C 97:012801(R) 2018.
  122. 122. 
    Fruet G, et al. Phys. Rev. Lett. 124:192701 2020.
  123. 123. 
    Tan WP, et al. Phys. Rev. Lett. 124:192702 2020.
  124. 124. 
    Abegg R, Davis CA. Phys. Rev. C 43:6 1991.
  125. 125. 
    Caciolli A, et al. Nucl. Instrum. Methods Phys. Res. B 266:1392 2008.
  126. 126. 
    Zickefoose J. Phys. Rev. C 97:065806 2018.
  127. 127. 
    Mukhamedzhanov AM, Kadyrov AS, Pang DY. Phys. Rev. C 99:064618 2019.
  128. 128. 
    Bonasera A, Natowitz JB. Phys. Rev. C 102:061602(R) 2020.
  129. 129. 
    Esbensen H, Tang X, Jiang CL. Phys. Rev. C 84:064613 2011.
  130. 130. 
    Jiang CL, et al. Phys. Rev. Lett. 110:072701 2013.
  131. 131. 
    Godbey K, Simenel C, Umar AS. Phys. Rev. C 100:024619 2019.
  132. 132. 
    Zhang N, et al. Phys. Lett. B 801:135170 2020.
  133. 133. 
    Tumino A, et al. Nuovo Cim. C 42:55 2019.
  134. 134. 
    Pignatari M, et al. Astrophys. J. 762:31 2013.
  135. 135. 
    Mori K, et al. Mon. Not. R. Astron. Soc. Lett. 482:L70 2019.
  136. 136. 
    Straniero O, Piersanti L, Dominguez I, Tumino A On the mass of supernova progenitors: the role of the 12C+12C reaction. Springer Proceedings in Physics, Vol. 219: Nuclei in the Cosmos XV A Formicola, M Junker, L Gialanella, G Imbriani 7–11 Cham, Switz: Springer https://doi.org/10.1007/978-3-030-13876-9_2 2019.
    [Crossref] [Google Scholar]
  137. 137. 
    Käppeler F, Gallino R, Bisterzo S, Aoki W. Rev. Mod. Phys. 83:157 2011.
  138. 138. 
    Adsley P, et al. Phys. Rev. C 103:015805 2021.
  139. 139. 
    Mumpower MR, et al. Prog. Part. Nucl. Phys. 86:86 2016.
/content/journals/10.1146/annurev-nucl-102419-033642
Loading
/content/journals/10.1146/annurev-nucl-102419-033642
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error