1932

Abstract

The Trojan Horse Method (THM) represents an indirect path to determine the bare nucleus astrophysical -factor for reactions among charged particles at astrophysical energies. This is achieved by measuring the quasi-free cross section of a suitable three-body process. The method is also suited to study neutron-induced reactions, especially in the case of radioactive ion beams. A comprehensive review of the theoretical as well as experimental features behind the THM is presented here. An overview is given of some recent applications to demonstrate the method's practical use for reactions that have a great impact on selected astrophysical scenarios.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-033642
2021-09-21
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-033642.html?itemId=/content/journals/10.1146/annurev-nucl-102419-033642&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Assenbaum HJ et al. Z. Phys. A 327:461 1987.
    [Google Scholar]
  2. 2. 
    Strieder F, et al. Naturwissenschaften 88:461 2001.
    [Google Scholar]
  3. 3. 
    Fiorentini G, et al. Z. Phys. A 350:289 1995.
    [Google Scholar]
  4. 4. 
    Spitaleri C, et al. Nucl. Phys. A 719:C99 2003.
    [Google Scholar]
  5. 5. 
    Tumino A, et al. Few-Body Syst. 54:869 2013.
    [Google Scholar]
  6. 6. 
    Tribble R, et al. Rep. Prog. Phys. 77:106901 2014.
    [Google Scholar]
  7. 7. 
    Tumino A, et al. Few-Body Syst. 54:745 2013.
    [Google Scholar]
  8. 8. 
    Spitaleri C, et al. Eur. Phys. J. A 52:77 2016.
    [Google Scholar]
  9. 9. 
    Spitaleri C, et al. Eur. Phys. J. A 55:161 2019.
    [Google Scholar]
  10. 10. 
    Pizzone RG, et al. Eur. Phys. J. A 56:283 2020.
    [Google Scholar]
  11. 11. 
    Rapisarda GG, et al. Eur. Phys. J. A 54:189 2018.
    [Google Scholar]
  12. 12. 
    D'Agata G, et al. Astrophys. J. 860:61 2018.
    [Google Scholar]
  13. 13. 
    Lamia L, et al. Astrophys. J. 811:99 2015.
    [Google Scholar]
  14. 14. 
    Tumino A, et al. Nature 557:687 2018.
    [Google Scholar]
  15. 15. 
    Baur G. Phys. Lett. B 178:135 1986.
    [Google Scholar]
  16. 16. 
    Baur G. Nucl. Energy 25:183 1987.
    [Google Scholar]
  17. 17. 
    Shapiro IS. Sov. Phys. Usp. 10:515 1968.
    [Google Scholar]
  18. 18. 
    Tumino A, et al. Phys. Rev. C 67:065803 2003.
    [Google Scholar]
  19. 19. 
    La Cognata M, et al. Astrophys. J. 708:796 2010.
    [Google Scholar]
  20. 20. 
    Thompson IJ. Comp. Phys. Rep. 7:167 1987.
    [Google Scholar]
  21. 21. 
    Perey CM, Perey FG. At. Data Nucl. Data Tables 17:1 1976.
    [Google Scholar]
  22. 22. 
    Newton RG. Scattering Theory of Waves and Particles Berlin: Springer 1982.
    [Google Scholar]
  23. 23. 
    Typel S. Eur. Phys. J. A 56:286 2020.
    [Google Scholar]
  24. 24. 
    Jain M, Roos PG, Pugh HG, Holmgren HD. Nucl. Phys. A 153:49 1970.
    [Google Scholar]
  25. 25. 
    Typel S, Wolter HH. Few-Body Syst. 29:75 2000.
    [Google Scholar]
  26. 26. 
    Typel S, Baur G. Ann. Phys. 305:228 2003.
    [Google Scholar]
  27. 27. 
    Aliotta M, et al. AIP Conf. Proc. 561:116 2001.
    [Google Scholar]
  28. 28. 
    Spitaleri C et al.Phys. Rev. C 63:055801 2001.
  29. 29. 
    Pellegriti MG, et al. Nucl. Phys. A 688:543 2001.
    [Google Scholar]
  30. 30. 
    Musumarra A, et al. Phys. Rev. C 64:068801 2001.
    [Google Scholar]
  31. 31. 
    Tumino A, et al. Nucl. Phys. A 718:499 2003.
    [Google Scholar]
  32. 32. 
    Pizzone RG, et al. Nucl. Phys. A 718:496 2003.
    [Google Scholar]
  33. 33. 
    Kadyrov AS, Bray I, Mukhamedzhanov AM, Stelbovics T. Ann. Phys. 324:1516 2009.
    [Google Scholar]
  34. 34. 
    Mukhamedzhanov AM. Phys. Rev. C 84:04461 2011.
    [Google Scholar]
  35. 35. 
    Mukhamedzhanov AM, Kadyrov AS, Pang DY. Eur. Phys. J. A 56:233 2020.
    [Google Scholar]
  36. 36. 
    Lane AM, Thomas RG. Rev. Mod. Phys. 30:257 1958.
    [Google Scholar]
  37. 37. 
    Hussein MS. Eur. Phys. J. A 53:100 2017.
    [Google Scholar]
  38. 38. 
    Bertulani CA, Hussein MS, Typel S. Phys. Lett. B 776:217 2018.
    [Google Scholar]
  39. 39. 
    Faddeev LD. Sov. Phys. JETP 12:1014 1961.
    [Google Scholar]
  40. 40. 
    Mahaux C, Weidenmüller HA. Shell-Model Approach to Nuclear Reactions Amsterdam: North-Holland 1969.
    [Google Scholar]
  41. 41. 
    La Cognata M, et al. Astrophys. J. 777:143 2013.
    [Google Scholar]
  42. 42. 
    La Cognata M, et al. Astrophys. J. 739:L54 2011.
    [Google Scholar]
  43. 43. 
    Mukhamedzhanov AM, et al. J. Phys. G 35:014016 2008.
    [Google Scholar]
  44. 44. 
    La Cognata M, et al. Phys. Rev. Lett. 109:232701 2012.
    [Google Scholar]
  45. 45. 
    Mukhamedzhanov AM. Phys. Rev. C 84:044616 2011.
    [Google Scholar]
  46. 46. 
    La Cognata M, et al. Astrophys. J. 723:1512 2010.
    [Google Scholar]
  47. 47. 
    Starrfield S, Iliadis C, Hix WR. Publ. Astron. Soc. Pac. 128:051001 2016.
    [Google Scholar]
  48. 48. 
    Starrfield S, Iliadis C, Hix WR. Thermonuclear processes. Classical Novae MF Bode, A Evans 77–101 Cambridge, UK: Cambridge Univ. Press. , 2nd ed.. ( 2008.
    [Google Scholar]
  49. 49. 
    José J, Shore SN. Observational mysteries and theoretical challenges for abundance studies. Classical Novae MF Bode, A Evans 121–40 Cambridge, UK: Cambridge Univ. Press. , 2nd ed.. ( 2008.
    [Google Scholar]
  50. 50. 
    José J. Stellar Explosions: Hydrodynamics and Nucleosynthesis Boca Raton, FL: CRC/Taylor and Francis 2016.
    [Google Scholar]
  51. 51. 
    Hernanz M, et al. Astrophys. J. 526:L97 1999.
    [Google Scholar]
  52. 52. 
    Hernanz M, José J Updated prospects for detectability of classical novae with INTEGRAL. Proceedings of the 5th INTEGRAL Workshop on the INTEGRAL Universe V Schönfelder, G Lichti, C Winkler 95–98 Noordwijk, Neth: Eur. Space Agency 2004.
    [Google Scholar]
  53. 53. 
    Rehm KE, et al. Phys. Rev. C 52:R460 1995.
    [Google Scholar]
  54. 54. 
    Rehm KE, et al. Phys. Rev. C 53:1950 1996.
    [Google Scholar]
  55. 55. 
    Graulich JS, et al. Phys. Rev. C 63:011302 2001.
    [Google Scholar]
  56. 56. 
    Bardayan DW, et al. Phys. Rev. C 63:065802 2001.
    [Google Scholar]
  57. 57. 
    Murphy ASJ, et al. Phys. Rev. C 79:058801 2009.
    [Google Scholar]
  58. 58. 
    de Sereville N, et al. Phys. Rev. C 79:015801 2009.
    [Google Scholar]
  59. 59. 
    Bardayan DW, et al. Phys. Rev. Lett. 89:262501 2002.
    [Google Scholar]
  60. 60. 
    Beer CE, et al. Phys. Rev. C 83:042801 2011.
    [Google Scholar]
  61. 61. 
    Kozub RL, et al. Phys. Rev. C 71:032801 2005.
    [Google Scholar]
  62. 62. 
    La Cognata M, et al. Phys. Rev. C 99:034301 2019.
    [Google Scholar]
  63. 63. 
    Dalouzy JC, et al. Phys. Rev. Lett. 102:162503 2009.
    [Google Scholar]
  64. 64. 
    Adekola AS, et al. Phys. Rev. C 83:052801 2011.
    [Google Scholar]
  65. 65. 
    Bardayan DW, et al. Phys. Lett. B 751:311 2015.
    [Google Scholar]
  66. 66. 
    Bardayan DW, et al. Phys. Rev. C 96:055806 2017.
    [Google Scholar]
  67. 67. 
    Cherubini S, et al. Phys. Rev. C 92:015805 2015.
    [Google Scholar]
  68. 68. 
    Pizzone RG, et al. Eur. Phys. J. A 52:24 2016.
    [Google Scholar]
  69. 69. 
    La Cognata M, et al. Astrophys. J. 846:65 2017.
    [Google Scholar]
  70. 70. 
    Bardayan DW, Kozub RL, Smith MS. Phys. Rev. C 71:018801 2005.
    [Google Scholar]
  71. 71. 
    Cyburt RH, et al. Astrophys. J. Suppl. Ser. 189:240 2010.
    [Google Scholar]
  72. 72. 
    José J, Hernanz M. Astrophys. J. 494:680 1998.
    [Google Scholar]
  73. 73. 
    Cyburt R, Fields B, Olive K. Rev. Mod. Phys. 88:015004 2016.
    [Google Scholar]
  74. 74. 
    Lamia L, et al. Astrophys. J. 768:65 2013.
    [Google Scholar]
  75. 75. 
    Tumino A, et al. Phys. Lett. B 700:111 2011.
    [Google Scholar]
  76. 76. 
    Tumino A, et al. Astrophys. J. 785:96 2014.
    [Google Scholar]
  77. 77. 
    Li C, et al. Phys. Rev. C 92:025805 2015.
    [Google Scholar]
  78. 78. 
    La Cognata M, et al. Phys. Rev. C 72:065802 2005.
    [Google Scholar]
  79. 79. 
    Lamia L, et al. Astron. Astrophys. 541:A158 2012.
    [Google Scholar]
  80. 80. 
    Pizzone RG, et al. Astrophys. J. 786:112 2014.
    [Google Scholar]
  81. 81. 
    Hou SQ, et al. Phys. Rev. C 91:055802 2015.
    [Google Scholar]
  82. 82. 
    Barbagallo M, et al. Phys. Rev. Lett. 117:152701 2016.
    [Google Scholar]
  83. 83. 
    Kawabata T, et al. Phys. Rev. Lett. 118:052701 2017.
    [Google Scholar]
  84. 84. 
    Lamia L, et al. Astrophys. J. 850:175 2017.
    [Google Scholar]
  85. 85. 
    Lamia L, et al. Astrophys. J. 879:23 2019.
    [Google Scholar]
  86. 86. 
    Tumino A, et al. Eur. Phys. J. A 27:243 2006.
    [Google Scholar]
  87. 87. 
    Pizzone RG, et al. Phys. Rev. C 83:045801 2011.
    [Google Scholar]
  88. 88. 
    Farinon F, et al. Nucl. Instrum. Methods Phys. Res. B 266:4097 2008.
    [Google Scholar]
  89. 89. 
    Lamia L, et al. Phys. Rev. C 85:025805 2012.
    [Google Scholar]
  90. 90. 
    Mazzocco M, et al. Nucl. Instrum. Methods Phys. Res. B 317:223 2013.
    [Google Scholar]
  91. 91. 
    Chadwich MB, et al. Nucl. Data Sheets 112:2887 2011.
    [Google Scholar]
  92. 92. 
    Lugaro M, et al. Astrophys. J. 615:934 2004.
    [Google Scholar]
  93. 93. 
    Cristallo S, et al. Astron. Astrophys. 570:46 2014.
    [Google Scholar]
  94. 94. 
    Ugalde C, et al. Phys. Rev. C 77:035801 2008.
    [Google Scholar]
  95. 95. 
    Pizzone RG, et al. Astrophys. J. 836:57 2017.
    [Google Scholar]
  96. 96. 
    Pizzone RG, et al. Phys. Rev. C 87:025805 2013.
    [Google Scholar]
  97. 97. 
    Lamia L, et al. Nuovo Cim. C 31:423 2008.
    [Google Scholar]
  98. 98. 
    Gulino M et al.J. Phys. G 37:125105 2010.
  99. 99. 
    Gulino M, et al. Phys. Rev. C 87:012801 2013.
    [Google Scholar]
  100. 100. 
    Guardo GL, et al. Phys. Rev. C 95:025807 2017.
    [Google Scholar]
  101. 101. 
    Guardo GL, et al. Eur. Phys. J. A 55:211 2019.
    [Google Scholar]
  102. 102. 
    Coon J. Phys. Rev. 80:488 1950.
    [Google Scholar]
  103. 103. 
    Batchelor RA, Skyrme THR. Rev. Sci. Instrum. 26:1037 1955.
    [Google Scholar]
  104. 104. 
    Gibbons IH, Macklin RL. Phys. Rev. 114:571 1959.
    [Google Scholar]
  105. 105. 
    Costello DG, et al. Nucl. Sci. Eng. 39:409 1970.
    [Google Scholar]
  106. 106. 
    Drosg M, Otuka N. Evaluation of the absolute angle-dependent differential neutron production cross sections by the reactions 3H(p,n)3He, 1H(t,n)3He, 2H(d,n)3He, 3H(d,n)4He, and 2H(t,n)4He and of the cross sections of their time-reversed counterparts up to 30 MeV and beyond Rep. INDC (AUS)-0019 Int. At. Energy Agency Vienna: 2015.
    [Google Scholar]
  107. 107. 
    Brune C, et al. Phys. Rev. C 60:015801 1999.
    [Google Scholar]
  108. 108. 
    Adahchour A, Descouvemont P. J. Phys. G 29:395 2003.
    [Google Scholar]
  109. 109. 
    Caughlan GR, Fowler WA. At. Data Nucl. Data Tables 40:283 1988.
    [Google Scholar]
  110. 110. 
    Pizzone RG, et al. Eur. Phys. J. A 56:199 2020.
    [Google Scholar]
  111. 111. 
    García-Berro E, et al. Astrophys. J. 485:765 1997.
    [Google Scholar]
  112. 112. 
    Cooper RL, et al. Astrophys. J. 702:660 2009.
    [Google Scholar]
  113. 113. 
    Becker HW, Kettner KU, Rolfs C, Trautvetter HP. Z. Phys. A 303:305 1981.
    [Google Scholar]
  114. 114. 
    Aguilera EF, et al. Phys. Rev. C 73:064501 2006.
    [Google Scholar]
  115. 115. 
    Spillane T, et al. Phys. Rev. Lett. 98:122501 2007.
    [Google Scholar]
  116. 116. 
    Mazarakis MG, Stephens WE. Phys. Rev. C 7:1280 1973.
    [Google Scholar]
  117. 117. 
    High MD, Cujec B. Nucl. Phys. A 282:181 1977.
    [Google Scholar]
  118. 118. 
    Kettner KU, Lorenz-Wirzba H, Rolfs C. Z. Phys. A 298:65 1980.
    [Google Scholar]
  119. 119. 
    Patterson JR, et al. Astrophys. J. 157:367 1969.
    [Google Scholar]
  120. 120. 
    Barrón-Palos L, et al. Nucl. Phys. A 779:318 2006.
    [Google Scholar]
  121. 121. 
    Jiang CL et al.Phys. Rev. C 97:012801(R) 2018.
  122. 122. 
    Fruet G, et al. Phys. Rev. Lett. 124:192701 2020.
    [Google Scholar]
  123. 123. 
    Tan WP, et al. Phys. Rev. Lett. 124:192702 2020.
    [Google Scholar]
  124. 124. 
    Abegg R, Davis CA. Phys. Rev. C 43:6 1991.
    [Google Scholar]
  125. 125. 
    Caciolli A, et al. Nucl. Instrum. Methods Phys. Res. B 266:1392 2008.
    [Google Scholar]
  126. 126. 
    Zickefoose J. Phys. Rev. C 97:065806 2018.
    [Google Scholar]
  127. 127. 
    Mukhamedzhanov AM, Kadyrov AS, Pang DY. Phys. Rev. C 99:064618 2019.
    [Google Scholar]
  128. 128. 
    Bonasera A, Natowitz JB. Phys. Rev. C 102:061602(R) 2020.
    [Google Scholar]
  129. 129. 
    Esbensen H, Tang X, Jiang CL. Phys. Rev. C 84:064613 2011.
    [Google Scholar]
  130. 130. 
    Jiang CL, et al. Phys. Rev. Lett. 110:072701 2013.
    [Google Scholar]
  131. 131. 
    Godbey K, Simenel C, Umar AS. Phys. Rev. C 100:024619 2019.
    [Google Scholar]
  132. 132. 
    Zhang N, et al. Phys. Lett. B 801:135170 2020.
    [Google Scholar]
  133. 133. 
    Tumino A, et al. Nuovo Cim. C 42:55 2019.
    [Google Scholar]
  134. 134. 
    Pignatari M, et al. Astrophys. J. 762:31 2013.
    [Google Scholar]
  135. 135. 
    Mori K, et al. Mon. Not. R. Astron. Soc. Lett. 482:L70 2019.
    [Google Scholar]
  136. 136. 
    Straniero O, Piersanti L, Dominguez I, Tumino A On the mass of supernova progenitors: the role of the 12C+12C reaction. Springer Proceedings in Physics, Vol. 219: Nuclei in the Cosmos XV A Formicola, M Junker, L Gialanella, G Imbriani 7–11 Cham, Switz: Springer https://doi.org/10.1007/978-3-030-13876-9_2 2019.
    [Crossref] [Google Scholar]
  137. 137. 
    Käppeler F, Gallino R, Bisterzo S, Aoki W. Rev. Mod. Phys. 83:157 2011.
    [Google Scholar]
  138. 138. 
    Adsley P, et al. Phys. Rev. C 103:015805 2021.
    [Google Scholar]
  139. 139. 
    Mumpower MR, et al. Prog. Part. Nucl. Phys. 86:86 2016.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102419-033642
Loading
/content/journals/10.1146/annurev-nucl-102419-033642
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error