1932

Abstract

Born in the aftermath of core-collapse supernovae, neutron stars contain matter under extraordinary conditions of density and temperature that are difficult to reproduce in the laboratory. In recent years, neutron star observations have begun to yield novel insights into the nature of strongly interacting matter in the high-density regime where current theoretical models are challenged. At the same time, chiral effective field theory has developed into a powerful framework to study nuclear matter properties with quantified uncertainties in the moderate-density regime for modeling neutron stars. In this article, we review recent developments in chiral effective field theory and focus on many-body perturbation theory as a computationally efficient tool for calculating the properties of hot and dense nuclear matter. We also demonstrate how effective field theory enables statistically meaningful comparisons among nuclear theory predictions, nuclear experiments, and observational constraints on the nuclear equation of state.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-041903
2021-09-21
2025-02-14
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-041903.html?itemId=/content/journals/10.1146/annurev-nucl-102419-041903&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Özel F, Freire P. Annu. Rev. Astron. Astrophys. 54:401 2016.
    [Google Scholar]
  2. 2. 
    Watts AL, et al. Rev. Mod. Phys. 88:021001 2016.
    [Google Scholar]
  3. 3. 
    Baiotti L. Prog. Part. Nucl. Phys. 109:103714 2019.
    [Google Scholar]
  4. 4. 
    Hergert H. Front. Phys. 8:379 2020.
    [Google Scholar]
  5. 5. 
    Stroberg SR, Bogner SK, Hergert H, Holt JD. Annu. Rev. Nucl. Part. Sci. 69:307 2019.
    [Google Scholar]
  6. 6. 
    Lynn J, Tews I, Gandolfi S, Lovato A. Annu. Rev. Nucl. Part. Sci. 69:279 2019.
    [Google Scholar]
  7. 7. 
    Hebeler K, Holt J, Menendez J, Schwenk A. Annu. Rev. Nucl. Part. Sci. 65:457 2015.
    [Google Scholar]
  8. 8. 
    Epelbaum E, Hammer HW, Meißner UG. Rev. Mod. Phys. 81:1773 2009.
    [Google Scholar]
  9. 9. 
    Machleidt R, Entem DR. Phys. Rep. 503:1 2011.
    [Google Scholar]
  10. 10. 
    Hammer HW, König S, van Kolck U. Rev. Mod. Phys. 92:025004 2020.
    [Google Scholar]
  11. 11. 
    Hammer HW, Nogga A, Schwenk A. Rev. Mod. Phys. 85:197 2013.
    [Google Scholar]
  12. 12. 
    Epelbaum E, Krebs H, Reinert P. Front. Phys. 8:98 2020.
    [Google Scholar]
  13. 13. 
    Furnstahl R, Klco N, Phillips D, Wesolowski S. Phys. Rev. C 92:024005 2015.
    [Google Scholar]
  14. 14. 
    Weinberg S. Phys. Lett. B 251:288 1990.
    [Google Scholar]
  15. 15. 
    Weinberg S. Nucl. Phys. B 363:3 1991.
    [Google Scholar]
  16. 16. 
    Weinberg S. Phys. Lett. B 295:114 1992.
    [Google Scholar]
  17. 17. 
    Reinert P, Krebs H, Epelbaum E. Eur. Phys. J. A 54:86 2018.
    [Google Scholar]
  18. 18. 
    Jiang W, et al. Phys. Rev. C 102:054301 2020.
    [Google Scholar]
  19. 19. 
    Piarulli M, Tews I. Front. Phys. 7:245 2020.
    [Google Scholar]
  20. 20. 
    Hoferichter M, Ruiz de Elvira J, Kubis B, Meißner UG. Phys. Rev. Lett. 115:192301 2015.
    [Google Scholar]
  21. 21. 
    Hoppe J, et al. Phys. Rev. C 96:054002 2017.
    [Google Scholar]
  22. 22. 
    Bogner S, Kuo T, Coraggio L. Nucl. Phys. A 684:432 2001.
    [Google Scholar]
  23. 23. 
    Bogner S, Furnstahl R, Schwenk A. Prog. Part. Nucl. Phys. 65:94 2010.
    [Google Scholar]
  24. 24. 
    Hebeler K, Furnstahl RJ. Phys. Rev. C 87:031302 2013.
    [Google Scholar]
  25. 25. 
    Keller J, Wellenhofer C, Hebeler K, Schwenk A. Phys. Rev. C 103:055806 2021.
    [Google Scholar]
  26. 26. 
    Hebeler K, et al. Phys. Rev. C 83:031301 2011.
    [Google Scholar]
  27. 27. 
    Drischler C, Hebeler K, Schwenk A. Phys. Rev. Lett. 122:042501 2019.
    [Google Scholar]
  28. 28. 
    Simonis J, et al. Phys. Rev. C 96:014303 2017.
    [Google Scholar]
  29. 29. 
    Stroberg S, Holt J, Schwenk A, Simonis J. Phys. Rev. Lett. 126:022501 2021.
    [Google Scholar]
  30. 30. 
    Hüther T, et al. Phys. Lett. B 808:135651 2020.
    [Google Scholar]
  31. 31. 
    Weinberg S. Phys. Rev. 131:440 1963.
    [Google Scholar]
  32. 32. 
    Szabo A, Ostlund NS. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory New York: Dover 1982.
    [Google Scholar]
  33. 33. 
    Mariño M, Reis T. J. Stat. Mech. 2019:123102 2019.
    [Google Scholar]
  34. 34. 
    Arthuis Pet al Comput. Phys. Comm 240:202( 2019.
    [Google Scholar]
  35. 35. 
    Day BD. Rev. Mod. Phys. 39:719 1967.
    [Google Scholar]
  36. 36. 
    Wellenhofer C. Phys. Rev. C 99:065811 2019.
    [Google Scholar]
  37. 37. 
    Kohn W, Luttinger JM. Phys. Rev. 118:41 1960.
    [Google Scholar]
  38. 38. 
    Wellenhofer C, Holt JW, Kaiser N, Weise W. Phys. Rev. C 89:064009 2014.
    [Google Scholar]
  39. 39. 
    Holt JW, Kaiser N. Phys. Rev. C 95:034326 2017.
    [Google Scholar]
  40. 40. 
    Hagen G, Papenbrock T, Hjorth-Jensen M, Dean DJ. Rep. Prog. Phys. 77:096302 2014.
    [Google Scholar]
  41. 41. 
    Lu BN, et al. Phys. Rev. Lett. 125:192502 2020.
    [Google Scholar]
  42. 42. 
    Dickhoff WH, Barbieri C. Prog. Part. Nucl. Phys. 52:377 2004.
    [Google Scholar]
  43. 43. 
    Rios A. Front. Phys. 8:387 2020.
    [Google Scholar]
  44. 44. 
    Carbone A, Rios A, Polls A. Phys. Rev. C 90:054322 2014.
    [Google Scholar]
  45. 45. 
    Carbone A, Polls A, Rios A. Phys. Rev. C 98:025804 2018.
    [Google Scholar]
  46. 46. 
    Drischler C, Carbone A, Hebeler K, Schwenk A. Phys. Rev. C 94:054307 2016.
    [Google Scholar]
  47. 47. 
    Tews I, Gandolfi S, Gezerlis A, Schwenk A. Phys. Rev. C 93:024305 2016.
    [Google Scholar]
  48. 48. 
    Lynn J, et al. Phys. Rev. Lett. 116:062501 2016.
    [Google Scholar]
  49. 49. 
    Lonardoni D, Tews I, Gandolfi S, Carlson J. Phys. Rev. Res. 2:022033 2020.
    [Google Scholar]
  50. 50. 
    Hebeler K, et al. Phys. Rev. C 91:044001 2015.
    [Google Scholar]
  51. 51. 
    Hebeler K. Phys. Rep. 890:1 2021.
    [Google Scholar]
  52. 52. 
    Holt JW, Kawaguchi M, Kaiser N. Front. Phys. 8:100 2020.
    [Google Scholar]
  53. 53. 
    Holt JW, Kaiser N, Weise W. Phys. Rev. C 79:054331 2009.
    [Google Scholar]
  54. 54. 
    Hebeler K, Schwenk A. Phys. Rev. C 82:014314 2010.
    [Google Scholar]
  55. 55. 
    Wellenhofer C, Holt JW, Kaiser N. Phys. Rev. C 92:015801 2015.
    [Google Scholar]
  56. 56. 
    Drischler C, Hebeler K, Schwenk A. Phys. Rev. C 93:054314 2016.
    [Google Scholar]
  57. 57. 
    Kaiser N. arXiv:2010.02739 2020.
  58. 58. 
    Hagen G, et al. Phys. Rev. C 89:014319 2014.
    [Google Scholar]
  59. 59. 
    Kaiser N. Eur. Phys. J. A 48:58 2012.
    [Google Scholar]
  60. 60. 
    Dyhdalo A, Furnstahl R, Hebeler K, Tews I. Phys. Rev. C 94:034001 2016.
    [Google Scholar]
  61. 61. 
    Dyhdalo A, Bogner S, Furnstahl R. Phys. Rev. C 96:054005 2017.
    [Google Scholar]
  62. 62. 
    Coraggio L, et al. Phys. Rev. C 87:014322 2013.
    [Google Scholar]
  63. 63. 
    Huth S, Wellenhofer C, Schwenk A. Phys. Rev. C 103:025803 2021.
    [Google Scholar]
  64. 64. 
    Carlsson BD, et al. Phys. Rev. X 6:011019 2016.
    [Google Scholar]
  65. 65. 
    Sammarruca F, et al. Phys. Rev. C 91:054311 2015.
    [Google Scholar]
  66. 66. 
    Rentmeester MCM, Timmermans RGE, de Swart JJ. Phys. Rev. C 67:044001 2003.
    [Google Scholar]
  67. 67. 
    Drischler C, Melendez J, Furnstahl R, Phillips D. Phys. Rev. C 102:054315 2020.
    [Google Scholar]
  68. 68. 
    Drischler C, Somà V, Schwenk A. Phys. Rev. C 89:025806 2014.
    [Google Scholar]
  69. 69. 
    Wellenhofer C, Holt JW, Kaiser N. Phys. Rev. C 93:055802 2016.
    [Google Scholar]
  70. 70. 
    Roca-Maza X, Paar N. Prog. Part. Nucl. Phys. 101:96 2018.
    [Google Scholar]
  71. 71. 
    Drischler C, Krüger T, Hebeler K, Schwenk A. Phys. Rev. C 95:024302 2017.
    [Google Scholar]
  72. 72. 
    Furnstahl R, Phillips D, Wesolowski S. J. Phys. G 42:034028 2015.
    [Google Scholar]
  73. 73. 
    Melendez J, et al. Phys. Rev. C 100:044001 2019.
    [Google Scholar]
  74. 74. 
    Epelbaum E, Krebs H, Meißner U. Eur. Phys. J. A 51:53 2015.
    [Google Scholar]
  75. 75. 
    Drischler C, Furnstahl R, Melendez J, Phillips D. Phys. Rev. Lett. 125:202702 2020.
    [Google Scholar]
  76. 76. 
    Melendez J, Wesolowski S, Furnstahl R. Phys. Rev. C 96:024003 2017.
    [Google Scholar]
  77. 77. 
    Leonhardt M, et al. Phys. Rev. Lett. 125:142502 2020.
    [Google Scholar]
  78. 78. 
    Tews I, Krüger T, Hebeler K, Schwenk A. Phys. Rev. Lett. 110:032504 2013.
    [Google Scholar]
  79. 79. 
    Hoppe J, et al. Phys. Rev. C 100:024318 2019.
    [Google Scholar]
  80. 80. 
    Horowitz C, et al. J. Phys. G 41:093001 2014.
    [Google Scholar]
  81. 81. 
    Lim Y, Holt JW. Phys. Rev. Lett. 121:062701 2018.
    [Google Scholar]
  82. 82. 
    Akmal A, Pandharipande VR, Ravenhall DG. Phys. Rev. C 58:1804 1998.
    [Google Scholar]
  83. 83. 
    Baldo M, Bombaci I, Burgio GF. Astron. Astrophys. 328:274 1997.
    [Google Scholar]
  84. 84. 
    Müther H, Prakash M, Ainsworth TL. Phys. Rev. B 199:469 1987.
    [Google Scholar]
  85. 85. 
    Tews I, Lattimer JM, Ohnishi A, Kolomeitsev EE. Astrophys. J. 848:105 2017.
    [Google Scholar]
  86. 86. 
    Tsang MB. Phys. Rev. Lett. 102:122701 2009.
    [Google Scholar]
  87. 87. 
    Chen L-W, Ko CM, Li B-A, Xu J. Phys. Rev. C 82:024321 2010.
    [Google Scholar]
  88. 88. 
    Trippa L, Colò G, Vigezzi E. Phys. Rev. C 77:061304(R) 2008.
    [Google Scholar]
  89. 89. 
    Tamii A. Phys. Rev. Lett. 107:062502 2011.
    [Google Scholar]
  90. 90. 
    Roca-Maza X. Phys. Rev. C 88:024316 2013.
    [Google Scholar]
  91. 91. 
    Kortelainen M. Phys. Rev. C 82:024313 2010.
    [Google Scholar]
  92. 92. 
    Danielewicz P, Singh P, Lee J. Nucl. Phys. A 958:147 2017.
    [Google Scholar]
  93. 93. 
    Hebeler K, Lattimer J, Pethick C, Schwenk A. Phys. Rev. Lett. 105:161102 2010.
    [Google Scholar]
  94. 94. 
    Gandolfi S, Carlson J, Reddy S. Phys. Rev. C 85:032801 2012.
    [Google Scholar]
  95. 95. 
    Essick R, et al. Phys. Rev. C 102:055803 2020.
    [Google Scholar]
  96. 96. 
    Cai BJ, Chen LW. Phys. Rev. C 85:024302 2012.
    [Google Scholar]
  97. 97. 
    Steiner AW. Phys. Rev. C 74:045808 2006.
    [Google Scholar]
  98. 98. 
    Somasundaram R, Drischler C, Tews I, Margueron J. Phys. Rev. C 103:045803 2021.
    [Google Scholar]
  99. 99. 
    Kaiser N. Phys. Rev. C 91:065201 2015.
    [Google Scholar]
  100. 100. 
    Wen P, Holt JW. arXiv:2012.02163 2020.
  101. 101. 
    Fore B, Reddy S. Phys. Rev. C 101:035809 2020.
    [Google Scholar]
  102. 102. 
    Petschauer S, et al. Front. Phys. 8:12 2020.
    [Google Scholar]
  103. 103. 
    Holt JW, Kaiser N, Weise W. Prog. Part. Nucl. Phys. 73:35 2013.
    [Google Scholar]
  104. 104. 
    Holt JW, Rho M, Weise W. Phys. Rep. 621:2 2016.
    [Google Scholar]
  105. 105. 
    Schneider AS, Horowitz CJ, Hughto J, Berry DK. Phys. Rev. C 88:065807 2013.
    [Google Scholar]
  106. 106. 
    Karnaukhov VA, et al. Phys. Atom. Nucl. 71:2067 2008.
    [Google Scholar]
  107. 107. 
    Elliott JB, Lake PT, Moretto LG, Phair L. Phys. Rev. C 87:054622 2013.
    [Google Scholar]
  108. 108. 
    Beegle BL, Modell M, Reid RC. Am. Inst. Chem. Eng. J. 20:1200 1974.
    [Google Scholar]
  109. 109. 
    Ducoin C, Chomaz P, Gulminelli F. Nucl. Phys. A 771:68 2006.
    [Google Scholar]
  110. 110. 
    Carbone A, Schwenk A. Phys. Rev. C 100:025805 2019.
    [Google Scholar]
  111. 111. 
    Yasin H, Schäfer S, Arcones A, Schwenk A. Phys. Rev. Lett. 124:092701 2020.
    [Google Scholar]
  112. 112. 
    Bauswein A, Janka HT, Oechslin R. Phys. Rev. D 82:084043 2010.
    [Google Scholar]
  113. 113. 
    Oertel M, Hempel M, Klähn T, Typel S. Rev. Mod. Phys. 89:015007 2017.
    [Google Scholar]
  114. 114. 
    Lattimer JM, Prakash M. Astrophys. J. 550:426 2001.
    [Google Scholar]
  115. 115. 
    Tsang C, et al. Phys. Lett. B 796:1 2019.
    [Google Scholar]
  116. 116. 
    Özel F, et al. Astrophys. J. 820:28 2016.
    [Google Scholar]
  117. 117. 
    Nättilä J, et al. Astron. Astrophys. 608:A31 2017.
    [Google Scholar]
  118. 118. 
    Miller MC, et al. Astrophys. J. 887:L24 2019.
    [Google Scholar]
  119. 119. 
    Riley TE, et al. Astrophys. J. 887:L21 2019.
    [Google Scholar]
  120. 120. 
    Annala E, et al. Nat. Phys. 16:907 2020.
    [Google Scholar]
  121. 121. 
    Baym G, Pethick C, Sutherland P. Astrophys. J. 170:299 1971.
    [Google Scholar]
  122. 122. 
    Greif S, et al. Mon. Not. R. Astron. Soc. 485:5363 2019.
    [Google Scholar]
  123. 123. 
    Tews I, Margueron J, Reddy S. Eur. Phys. J. A 55:97 2019.
    [Google Scholar]
  124. 124. 
    Lim Y, Holt J. Eur. Phys. J. A 55:209 2019.
    [Google Scholar]
  125. 125. 
    Tews I, Carlson J, Gandolfi S, Reddy S. Astrophys. J. 860:149 2018.
    [Google Scholar]
  126. 126. 
    Lyne AG, et al. Science 303:1153 2004.
    [Google Scholar]
  127. 127. 
    Lattimer JM, Schutz BF. Astrophys. J. 629:979 2005.
    [Google Scholar]
  128. 128. 
    Hu H, et al. Mon. Not. R. Astron. Soc. 497:3118 2020.
    [Google Scholar]
  129. 129. 
    Lim Y, Holt JW, Stahulak RJ. Phys. Rev. C 100:035802 2019.
    [Google Scholar]
  130. 130. 
    Greif S, et al. Astrophys. J. 901:155 2020.
    [Google Scholar]
  131. 131. 
    Raithel CA, Özel F, Psaltis D. Phys. Rev. C 93:032801 2016.
    [Google Scholar]
  132. 132. 
    Demorest PB, et al. Nature 467:1081 2010.
    [Google Scholar]
  133. 133. 
    Antoniadis J, et al. Science 340:6131 2013.
    [Google Scholar]
  134. 134. 
    Cromartie HT, et al. Nat. Astron. 4:72 2019.
    [Google Scholar]
  135. 135. 
    Alford MG, Han S, Prakash M. Phys. Rev. D 88:083013 2013.
    [Google Scholar]
  136. 136. 
    Drischler C, et al. Phys. Rev. C 103:045808 2021.
    [Google Scholar]
  137. 137. 
    Flanagan EE, Hinderer T. Phys. Rev. D 77:021502 2008.
    [Google Scholar]
  138. 138. 
    Annala E, Gorda T, Kurkela A, Vuorinen A. Phys. Rev. Lett. 120:172703 2018.
    [Google Scholar]
  139. 139. 
    Yagi K, Yunes N. Phys. Rev. D 88:023009 2013.
    [Google Scholar]
  140. 140. 
    Bauswein A, Janka HT, Hebeler K, Schwenk A. Phys. Rev. D 86:063001 2012.
    [Google Scholar]
  141. 141. 
    Bauswein A, et al. Phys. Rev. Lett. 122:061102 2019.
    [Google Scholar]
  142. 142. 
    Abbott BP, et al. Phys. Rev. Lett. 119:161101 2017.
    [Google Scholar]
  143. 143. 
    Abbott BP, et al. Astrophys. J. Lett. 848:L12 2017.
    [Google Scholar]
  144. 144. 
    Abbott BP, et al. Phys. Rev. Lett. 121:161101 2018.
    [Google Scholar]
  145. 145. 
    Tews I, Margueron J, Reddy S. Phys. Rev. C 98:045804 2018.
    [Google Scholar]
  146. 146. 
    Abbott BP, et al. Phys. Rev. X 9:011001 2019.
    [Google Scholar]
  147. 147. 
    Fattoyev FJ, Piekarewicz J, Horowitz CJ. Phys. Rev. Lett. 120:172702 2018.
    [Google Scholar]
  148. 148. 
    Metzger BD, et al. Mon. Not. R. Astron. Soc. 406:2650 2010.
    [Google Scholar]
  149. 149. 
    Bauswein A, Just O, Janka HT, Stergioulas N. Astrophys. J. Lett. 850:L34 2017.
    [Google Scholar]
  150. 150. 
    Margalit B, Metzger BD. Astrophys. J. Lett. 850:L19 2017.
    [Google Scholar]
  151. 151. 
    Shibata M, et al. Phys. Rev. D 96:123012 2017.
    [Google Scholar]
  152. 152. 
    Radice D, Perego A, Zappa F, Bernuzzi S. Astrophys. J. Lett. 852:L29 2018.
    [Google Scholar]
  153. 153. 
    Rezzolla L, Most ER, Weih LR. Astrophys. J. Lett. 852:L25 2018.
    [Google Scholar]
  154. 154. 
    Capano CD, et al. Nat. Astron. 4:625 2020.
    [Google Scholar]
  155. 155. 
    Lim Y, Bhattacharya A, Holt JW, Pati D. arXiv:2007.06526 2020.
  156. 156. 
    Raaijmakers G, et al. Astrophys. J. Lett. 893:L21 2020.
    [Google Scholar]
  157. 157. 
    Janka HT, et al. Phys. Rep. 442:38 2007.
    [Google Scholar]
  158. 158. 
    Pons JA, et al. Astrophys. J. 513:780 1999.
    [Google Scholar]
  159. 159. 
    Roberts LF, Woosley SE, Hoffman RD. Astrophys. J. 722:954 2010.
    [Google Scholar]
  160. 160. 
    Müller B. Publ. Astron. Soc. Aust. 33:e048 2016.
    [Google Scholar]
  161. 161. 
    Schneider AS, Roberts LF, Ott CD, O'Connor E. Phys. Rev. C 100:055802 2019.
    [Google Scholar]
  162. 162. 
    Rrapaj E, Roggero A, Holt JW. Phys. Rev. C 93:065801 2016.
    [Google Scholar]
  163. 163. 
    Du X, Steiner AW, Holt JW. Phys. Rev. C 99:025803 2019.
    [Google Scholar]
  164. 164. 
    Roberts LF, Reddy S, Shen G. Phys. Rev. C 86:065803 2012.
    [Google Scholar]
  165. 165. 
    Martínez-Pinedo G, Fischer T, Lohs A, Huther L. Phys. Rev. Lett. 109:251104 2012.
    [Google Scholar]
  166. 166. 
    Rrapaj E, et al. Phys. Rev. C 91:035806 2015.
    [Google Scholar]
  167. 167. 
    Bartl A, Pethick C, Schwenk A. Phys. Rev. Lett. 113:081101 2014.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102419-041903
Loading
/content/journals/10.1146/annurev-nucl-102419-041903
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error