1932

Abstract

The impact of new and highly precise neutron decay data is reviewed. We focus on recent results from neutron lifetime, asymmetry, and electron–neutrino correlation experiments. From these results, weak interaction parameters are extracted with unprecedented precision, which is possible also because of progress in effective field theory and lattice QCD. Limits on New Physics beyond the Standard Model derived from neutron decay data are sharper than those derived from high-energy experiments, except for processes involving right-handed neutrinos.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-043156
2021-09-21
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-043156.html?itemId=/content/journals/10.1146/annurev-nucl-102419-043156&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abele H. Prog. Part. Nucl. Phys. 60:1 2008.
    [Google Scholar]
  2. 2. 
    Nico J. J. Phys. G 36:104001 2009.
    [Google Scholar]
  3. 3. 
    Dubbers D, Schmidt MG. Rev. Mod. Phys. 83:1111 2011.
    [Google Scholar]
  4. 4. 
    Wietfeldt FE, Greene GL. Rev. Mod. Phys. 83:1173 2011.
    [Google Scholar]
  5. 5. 
    Bhattacharya T et al. Phys. Rev. D 85:054512 2012.
    [Google Scholar]
  6. 6. 
    Holstein BR. J. Phys. G 41:110301 2014.
    [Google Scholar]
  7. 7. 
    Jenke T et al. eds EPJ Web Conf 219:00001 2019.
    [Google Scholar]
  8. 8. 
    Severijns N, Beck M, Naviliat-Cuncic O. Rev. Mod. Phys. 78:991 2006.
    [Google Scholar]
  9. 9. 
    Vos KK, Wilschut H, Timmermans RGE. Rev. Mod. Phys. 87:1483 2015.
    [Google Scholar]
  10. 10. 
    González-Alonso M, Naviliat-Cuncic O, Severijns N. Prog. Part. Nucl. Phys. 104:165 2019.
    [Google Scholar]
  11. 11. 
    Abel C et al. Phys. Rev. Lett. 124:081803 2020.
    [Google Scholar]
  12. 12. 
    Baldo-Ceolin M et al. Z. Phys. C 63:405 1994.
    [Google Scholar]
  13. 13. 
    Berezhiani Z et al. Physics 1:271 2019.
    [Google Scholar]
  14. 14. 
    Gardner S, Haxton WC, Holstein BR. Annu. Rev. Nucl. Part. Sci. 67:69 2017.
    [Google Scholar]
  15. 15. 
    Cronenberg Get al Nat. Phys. 14:1022 2018.
    [Google Scholar]
  16. 16. 
    Rauch H, Werner SA. Neutron Interferometry Oxford, UK: Oxford Univ. Press 2015.
    [Google Scholar]
  17. 17. 
    Bitter T, Dubbers D. Phys. Rev. Lett. 59:251 1987.
    [Google Scholar]
  18. 18. 
    Muskat E, Dubbers D, Schärpf O. Phys. Rev. Lett. 58:2047 1987.
    [Google Scholar]
  19. 19. 
    Lushchikov VI et al. JETP Lett 9:23 1969.
    [Google Scholar]
  20. 20. 
    Steyerl A. Phys. Lett. B 29:33 1969.
    [Google Scholar]
  21. 21. 
    Steyerl A et al. Phys. Lett. A 116:347 1986.
    [Google Scholar]
  22. 22. 
    Golub R, Pendlebury JM. Phys. Lett. A 53:133 1975.
    [Google Scholar]
  23. 23. 
    Bison G et al. Phys. Rev. C 95:045503 2017.
    [Google Scholar]
  24. 24. 
    Maier-Leibnitz H, Springer T. Annu. Rev. Nucl. Sci. 16:207 1966.
    [Google Scholar]
  25. 25. 
    Häse H et al. Nucl. Instrum. Meth. A 485:453 2002.
    [Google Scholar]
  26. 26. 
    Abele H et al. Nucl. Instrum. Meth. A 562:407 2006.
    [Google Scholar]
  27. 27. 
    Mezei F. Comm. Phys. 1:81 1976.
    [Google Scholar]
  28. 28. 
    Serebrov AP et al. Phys. Lett. A 309:218 2003.
    [Google Scholar]
  29. 29. 
    Ignatovich VK. The Physics of Ultracold Neutrons Oxford, UK: Oxford Univ. Press 1990.
    [Google Scholar]
  30. 30. 
    Golub R, Richardson D, Lamoreaux K. Ultracold Neutrons Bristol, UK: Hilger 1991.
    [Google Scholar]
  31. 31. 
    Steyerl A Ultracold Neutrons Singapore: World Sci 2020.
    [Google Scholar]
  32. 32. 
    Schaerpf O. Physica B 156–157639 1989.
    [Google Scholar]
  33. 33. 
    Petukhov AK et al. Rev. Sci. Instrum. 90:085112 2019.
    [Google Scholar]
  34. 34. 
    Klauser C et al. Nucl. Instrum. Meth. A 840:181 2016.
    [Google Scholar]
  35. 35. 
    Mauri G et al. Eur. Phys. J. Tech. Instrum. 6:3 2019.
    [Google Scholar]
  36. 36. 
    Köhli M et al. Nucl. Instrum. Meth. A 828:242 2016.
    [Google Scholar]
  37. 37. 
    Webber DM. Phys. Rev. Lett. 106:041803 2011. Erratum. Phys. Rev. Lett. 106:079901 2011.
    [Google Scholar]
  38. 38. 
    Cabibbo N, Swallow EC, Winston R. Phys. Rev. Lett. 10:531 1963.
    [Google Scholar]
  39. 39. 
    Kobayashi M, Maskawa T. Prog. Theor. Phys. 49:652 1973.
    [Google Scholar]
  40. 40. 
    Gell-Mann M. Phys. Rev. 111:362 1958.
    [Google Scholar]
  41. 41. 
    Goldberger ML, Treiman SB. Phys. Rev. 111:354 1958.
    [Google Scholar]
  42. 42. 
    Bali GS et al. J. High Energy Phys. 2005:126 2020.
    [Google Scholar]
  43. 43. 
    Ivanov AN et al. arXiv:2104.11080v1 [hep-ph] (2021)
    [Google Scholar]
  44. 44. 
    Hayen L et al. Rev. Mod. Phys. 90:015008 2018.
    [Google Scholar]
  45. 45. 
    Jackson JD, Treiman SB, Wyld HW Jr. Phys. Rev. 106:517 1957.
    [Google Scholar]
  46. 46. 
    Jackson JD, Treiman SB, Wyld HW Jr. Nucl. Phys. 4:206 1957.
    [Google Scholar]
  47. 47. 
    Ebel ME, Feldman G. Nucl. Phys. 4:2013 1957.
    [Google Scholar]
  48. 48. 
    Fierz M. Z. Phys. 104:553 1937.
    [Google Scholar]
  49. 49. 
    Glűck F, Ioó I, Last J. Nucl. Phys. A 593:125 1995.
    [Google Scholar]
  50. 50. 
    Roick CM. Particle detection and proton asymmetry in neutron beta decay. Dr. rer. nat. Thesis Tech. Univ. Munich, Ger https://mediatum.ub.tum.de/doc/1452579/1452579.pdf 2018.
    [Google Scholar]
  51. 51. 
    Weinberg S. Proc. Sci. CD09:001 2009.
    [Google Scholar]
  52. 52. 
    Holstein BR. Nucl. Phys. A 689:135 2001.
    [Google Scholar]
  53. 53. 
    Lee TD, Yang CN. Phys. Rev. 105:1671 1957.
    [Google Scholar]
  54. 54. 
    Herczeg P. Prog. Part. Nucl. Phys. 46:413 2001.
    [Google Scholar]
  55. 55. 
    Cirigliano V, Gardner S, Holstein BR. Prog. Part. Nucl. Phys. 71:93 2013.
    [Google Scholar]
  56. 56. 
    Ando S et al. Phys. Lett. B 595:250 2004.
    [Google Scholar]
  57. 57. 
    Marciano WJ, Sirlin A. Phys. Rev. Lett. 96:032002 2006.
    [Google Scholar]
  58. 58. 
    Willenbrock S, Zhang C. Annu. Rev. Nucl. Part. Sci. 64:83 2014.
    [Google Scholar]
  59. 59. 
    Buchmüller W, Wyler D. Nucl. Phys. B 268:621 1986.
    [Google Scholar]
  60. 60. 
    Grzadkowski B et al. J. High Energy Phys. 1010:85 2010.
    [Google Scholar]
  61. 61. 
    Falkowski A, González-Alonso M, Mimouni K. J. High Energy Phys. 1708:123 2017.
    [Google Scholar]
  62. 62. 
    Chang CC et al. Nature 558:91 2018.
    [Google Scholar]
  63. 63. 
    Gupta R et al. Phys. Rev. D 98:034503 2018.
    [Google Scholar]
  64. 64. 
    Liang J et al. Phys. Rev. D 98:074505 2018.
    [Google Scholar]
  65. 65. 
    Harris T et al. Phys. Rev. D 100:034513 2019.
    [Google Scholar]
  66. 66. 
    Aoki S et al. Eur. Phys. J. C 80:113 2020.
    [Google Scholar]
  67. 67. 
    Cirigliano V et al. arXiv:1907.02164 [nucl-ex] 2019.
  68. 68. 
    Zyla PA et al. (Part. Data Group) Prog. Theor. Exp. Phys. 2020:083C01 2020.
    [Google Scholar]
  69. 69. 
    Robson JM. Phys. Rev. 83:349 1951.
    [Google Scholar]
  70. 70. 
    Christensen CJ et al. Phys. Rev. D 5:1628 1972.
    [Google Scholar]
  71. 71. 
    Abov YG, Vasil'ev VV, Vladimirskii VV, Rozhnin IB JETP Lett. 44:369 1986.
    [Google Scholar]
  72. 72. 
    Paul W et al. Z. Phys. C 45:25 1989.
    [Google Scholar]
  73. 73. 
    Mampe W et al. Nucl. Instrum. Meth. A 284:111 1989.
    [Google Scholar]
  74. 74. 
    Wietfeldt HE Atoms 6:70 2018.
    [Google Scholar]
  75. 75. 
    Arzumanov S et al. Phys. Lett. B 745:79 2015.
    [Google Scholar]
  76. 76. 
    Serebrov AP et al. Phys. Rev. C 97:055503 2018.
    [Google Scholar]
  77. 77. 
    Fomin A, Serebrov A. EPJ Web Conf. 219:03001 2019.
    [Google Scholar]
  78. 78. 
    Serebrov A et al. Phys. Lett. B 605:72 2005.
    [Google Scholar]
  79. 79. 
    Dubbers D. arXiv:1807.07026 [hep-ph] 2018.
  80. 80. 
    Morris CL et al. Rev. Sci. Instrum. 88:053508 2017.
    [Google Scholar]
  81. 81. 
    Pattie RW Jr. et al. Science 360:627 2018.
    [Google Scholar]
  82. 82. 
    Steyerl A, Gutsmiedl E. Phys. Rev. C 102:045203 2020.
    [Google Scholar]
  83. 83. 
    Ezhov VF et al. JETP Lett 107:671 2018.
    [Google Scholar]
  84. 84. 
    Yue AT et al. Phys. Rev. Lett. 111:222501 2013.
    [Google Scholar]
  85. 85. 
    Pichlmaier A et al. Phys. Lett. B 693:221 2010.
    [Google Scholar]
  86. 86. 
    Steyerl A et al. Phys. Rev. C 85:0655023 2012.
    [Google Scholar]
  87. 87. 
    Materne S et al. Nucl. Instrum. Meth. A 611:176 2009.
    [Google Scholar]
  88. 88. 
    Leung KKH et al. Phys. Rev. C 94:045502 2016.
    [Google Scholar]
  89. 89. 
    Karch JP. Design und Aufbau des Experiments τSPECT zur Messung der Neutronlebensdauer mittels magnetischer Wandspeicherung. Dr. rer. nat. Thesis Johannes Gutenberg Univ. Mainz, Ger: https://d-nb.info/1143864549/34 2017.
    [Google Scholar]
  90. 90. 
    Hirota K et al. Prog. Theor. Exp. Phys. 2020:123C02 2020.
    [Google Scholar]
  91. 91. 
    Hoogerheide SF et al. EPJ Web Conf 219:03002 2019.
    [Google Scholar]
  92. 92. 
    Dubbers D. Nucl. Instrum. Meth. A 1009165456( 2021.
    [Google Scholar]
  93. 93. 
    Roick C et al. Phys. Rev. C 97: 035502 2018.
    [Google Scholar]
  94. 94. 
    Ashtari Esfahani A et al. New J. Phys. 22:033004 2020.
    [Google Scholar]
  95. 95. 
    Dubbers D, Schmidt U. Nucl. Instrum. Meth. A 837:50 2016.
    [Google Scholar]
  96. 96. 
    Märkisch B et al. Phys. Rev. Lett. 122:242501 2019.
    [Google Scholar]
  97. 97. 
    Brown MA-P et al. Phys. Rev. C 97:035505 2018.
    [Google Scholar]
  98. 98. 
    Beck M et al. Phys. Rev. C 101:055506 2020.
    [Google Scholar]
  99. 99. 
    Otten EW, Weinheimer C. Rep. Prog. Phys. 71:086201 2008.
    [Google Scholar]
  100. 100. 
    Stratowa C, Dobrozemsky R, Weinzierl P. Phys. Rev. D 18:3970 1978.
    [Google Scholar]
  101. 101. 
    Byrne J et al. J. Phys. G 28:1325 2002.
    [Google Scholar]
  102. 102. 
    Hassan MTet al Phys. Rev. C 103:045502( 2021.
    [Google Scholar]
  103. 103. 
    Pattie RW, Hickerson KP, Young AR. Phys. Rev. C 88:048501 2013.
    [Google Scholar]
  104. 104. 
    Hickerson KP et al. Phys. Rev. C 96:042501(R) 2017. Erratum. Phys. Rev. C 96:059901 (2017)
    [Google Scholar]
  105. 105. 
    Saul H et al. Phys. Rev. Lett. 125:112501 2020.
    [Google Scholar]
  106. 106. 
    Sun X et al. Phys. Rev. C 101:035503 2020.
    [Google Scholar]
  107. 107. 
    Serebrov AP et al. JETP 86:1074 [ZETF 113:1963 1998.)]
    [Google Scholar]
  108. 108. 
    Kreuz M et al. Phys. Lett. B 619:263 2005.
    [Google Scholar]
  109. 109. 
    Schumann M et al. Phys. Rev. Lett. 99:191803 2007.
    [Google Scholar]
  110. 110. 
    Schumann M et al. Phys. Rev. Lett. 100:151801 2008.
    [Google Scholar]
  111. 111. 
    Soldner T et al. Phys. Lett. B 581:49 2004.
    [Google Scholar]
  112. 112. 
    Chupp TE et al. Phys. Rev. C 86:035505 2012.
    [Google Scholar]
  113. 113. 
    Kozela A et al. Phys. Rev. C 85:045501 2012.
    [Google Scholar]
  114. 114. 
    Bales MJ et al. Phys. Rev. Lett. 116:242501 2016.
    [Google Scholar]
  115. 115. 
    Bernard V et al. Phys. Lett. B 593:105 2004.
    [Google Scholar]
  116. 116. 
    Schott W et al. EPJ Web Conf 219:04006 2019.
    [Google Scholar]
  117. 117. 
    Počanić D et al. Nucl. Instrum. Meth. A 611:211 2009.
    [Google Scholar]
  118. 118. 
    Fry J et al. EPJ Web Conf 219:04002 2019.
    [Google Scholar]
  119. 119. 
    Dubbers D et al. Nucl. Instrum. Meth. A 596:238 2008.
    [Google Scholar]
  120. 120. 
    Wang X et al. EPJ Web Conf 219:04007 2019.
    [Google Scholar]
  121. 121. 
    Moser D et al. J. Phys. Conf. Ser. 1643:012005 2020.
    [Google Scholar]
  122. 122. 
    Soldner T et al. EPJ Web Conf 219:10003 2019.
    [Google Scholar]
  123. 123. 
    Bodek K et al. EPJ Web Conf 219:04001 2019.
    [Google Scholar]
  124. 124. 
    Fields BD et al. J. Cosmol. Astropart. Phys. 2003:010 2020.
    [Google Scholar]
  125. 125. 
    Towner IS, Hardy JC. Rep. Prog. Phys. 73:046301 2010.
    [Google Scholar]
  126. 126. 
    Seng CY et al. Phys. Rev. Lett. 121:241804 2018.
    [Google Scholar]
  127. 127. 
    Feng X et al. Phys. Rev. Lett. 124:192002 2020.
    [Google Scholar]
  128. 128. 
    Hardy JC, Towner IS. Phys. Rev. C 102:045501 2020.
    [Google Scholar]
  129. 129. 
    Gorchtein M. Phys. Rev. Lett. 123:042503 2019.
    [Google Scholar]
  130. 130. 
    Seng CY, Gorchtein M, Ramsey-Musolf MJ. Phys. Rev. D 100:013001 2019.
    [Google Scholar]
  131. 131. 
    Czarnecki A, Marciano WJ, Sirlin A. Phys. Rev. D 101:091301(R) 2020.
    [Google Scholar]
  132. 132. 
    Falkowski A, González-Alonso M, Naviliat-Cuncic O. J. High Energy Phys 2104126( 2021.
    [Google Scholar]
  133. 133. 
    De Florian D et al. Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector. Rep. CERN-2017-002-M, CERN Geneva: https://e-publishing.cern.ch/index.php/CYRM/issue/view/32/3 2017.
    [Google Scholar]
  134. 134. 
    Seng CY et al. Phys. Rev. D 101:111301(R) 2020.
    [Google Scholar]
  135. 135. 
    Fornal B, Grinstein B. Phys. Rev. Lett. 120:191801 2018.
    [Google Scholar]
  136. 136. 
    Dubbers D et al. Phys. Lett. B 791:6 2019.
    [Google Scholar]
  137. 137. 
    Czarnecki A, Marciano WJ, Sirlin A. Phys. Rev. Lett. 120:202002 2018.
    [Google Scholar]
  138. 138. 
    Hayen L, Young AR. arXiv:2009.11364 [nucl-ex] 2020.
  139. 139. 
    Combs D et al. arXiv:2009.13700 [nucl-ex] 2020.
  140. 140. 
    Ando S, McGovern JA, Sato T. Phys. Lett. B 677:109 2009.
    [Google Scholar]
  141. 141. 
    Beg MAB et al. Phys. Rev. Lett. 38:1252 1977.
    [Google Scholar]
  142. 142. 
    Severijns N. J. Phys. G 41:114006 2014.
    [Google Scholar]
  143. 143. 
    Collady D, Kostelecký VA. Phys. Rev. D 58:116002 1998.
    [Google Scholar]
  144. 144. 
    Niţescu O, Ghinescu S, Stoica S. J. Phys. G 47:055112 2020.
    [Google Scholar]
  145. 145. 
    Bodek K et al. Proc. Sci. X LASNPA:029 2014.
    [Google Scholar]
  146. 146. 
    Crivellin A, Hoferichter M. Phys. Rev. Lett. 125:111801 2020.
    [Google Scholar]
  147. 147. 
    Roberts BM, Dzuba VA, Flambaum VV. Annu. Rev. Nucl. Part. Sci. 65:63 2015.
    [Google Scholar]
  148. 148. 
    Khachatryan V et al. Phys. Rev. D 91:092005 2015.
    [Google Scholar]
  149. 149. 
    Aad G et al. J. High Energy Phys. 1608:9 2016.
    [Google Scholar]
  150. 150. 
    Aad G et al. J. High Energy Phys. 2011:5 2020.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102419-043156
Loading
/content/journals/10.1146/annurev-nucl-102419-043156
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error