1932

Abstract

Since its start, the Large Hadron Collider (LHC) has helped advance both theory and experiment on the production and properties of the heaviest fundamental particle, the top quark. This review focuses on a selected set of measurements and associated searches for new physics, which have opened the door for unprecedented precision in this area of high-energy physics. Fundamental parameters of the theory such as , α, , and are measured from top quark events with relative uncertainties that are smaller than 0.5%, 1.8%, 2%, and 10%, respectively, and that are expected to improve with more data, better experimental methods, and more accurate theory predictions. Several results, even if statistically limited, already significantly constrain the phase space of new physics: measurements of associated production with bosons, processes with four top quarks, and searches for rare decays, among others. It is expected that until the completion of the LHC program, top quark physics will keep providing unique insights regarding the consistency of the Standard Model and the energy scale of new physics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-052854
2023-09-25
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-102419-052854.html?itemId=/content/journals/10.1146/annurev-nucl-102419-052854&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Workman R et al. PTEP 2022:083C01 2022.)
  2. 2.
    Peskin ME, Takeuchi T. Phys. Rev. D 46:381 1992.)
  3. 3.
    Degrassi G et al. J. High Energy Phys. 1208:98 2012.)
  4. 4.
    Morrissey DE et al. Phys. Rep. 515:1 2012.)
  5. 5.
    Aad G et al. (ATLAS Collab.) J. Instrum. 3:S08003 2008.)
  6. 6.
    Chatrchyan S et al. (CMS Collab.) J. Instrum. 3:S08004 2008.)
  7. 7.
    Alves AA Jr. et al. (LHCb Collab.) J. Instrum. 3:S08005 2008.)
  8. 8.
    Abe F et al. (CDF Collab.) Phys. Rev. Lett. 74:2626 1995.)
  9. 9.
    Abachi S et al. (D0 Collab.) Phys. Rev. Lett. 74:2632 1995.)
  10. 10.
    Campagnari C, Franklin M. Rev. Mod. Phys. 69:137 1997.)
  11. 11.
    Cristinziani M, Mulders M. J. Phys. G 44:063001 2017.)
  12. 12.
    Giammanco A, Schwienhorst R. Rev. Mod. Phys. 90:035001 2018.)
  13. 13.
    ATLAS Collab. Top-quark physics. CERN. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults 2023.)
    [Google Scholar]
  14. [Google Scholar]
  15. 15.
    LHCb Collab Publications of the QCD, Electroweak and Exotica Working Group. CERN. https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/SummaryEE.html 2023.)
    [Google Scholar]
  16. 16.
    ATLAS/CMS Collab. LHCTopWG—LHC Top Physics Working Group. CERN. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWG 2023.)
    [Google Scholar]
  17. 17.
    ATLAS/CDF/CMS/D0 Collab Report ATLAS-CONF-2014-008/CDF-NOTE-11071/CMS-PAS-TOP-13-014/D0-NOTE-6416/FERMILAB-TM-2582-E CERN/Fermilab Geneva/Batavia, IL: 2014.)
  18. 18.
    Bigi I et al. Phys. Lett. B 181:157 1986.)
  19. 19.
    Ferrario Ravasio S et al. Eur. Phys. J. C 78:458 2018. Addendum. Eur. Phys. J. C 79:859 2019.)
    [Google Scholar]
  20. 20.
    Hoang AH. Annu. Rev. Nucl. Part. Sci. 70:225 2020.)
  21. 21.
    Cowan G. Statistical Data Analysis Oxford, UK: Oxford Univ. Press 1998.)
  22. 22.
    ATLAS/CMS Collab Particle level objects and pseudo-top-quark definitions. CERN. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ParticleLevelTopDefinitions 2016.)
    [Google Scholar]
  23. 23.
    CMS Collab Report CERN-CMS-NOTE-2017-004 CERN Geneva: 2017.)
  24. 24.
    Argyropoulos S, Sjöstrand T J. High Energy Phys. 1411:43 2014.)
  25. 25.
    Christiansen JR, Skands PZ. J. High Energy Phys. 1508:3 2015.)
  26. 26.
    Gieseke S et al. Eur. Phys. J. C 72:2225 2012.)
  27. 27.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 79:1028 2019. Erratum. Eur. Phys. J. C 80:1092 2020.)
    [Google Scholar]
  28. 28.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2304:80 2023.)
  29. 29.
    Tumasyan A et al. (CMS Collab.) Phys. Rev. D 104:092013 2021.)
  30. 30.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. D 103:052008 2021.)
  31. 31.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1908:33 2019.)
  32. 32.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 78:847 2018.)
  33. 33.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. D 98:092014 2018.)
  34. 34.
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 106:032008 2022.)
  35. 35.
    CMS Collab Report CMS-PAS-TOP-18-012 CERN Geneva: 2021.)
  36. 36.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 79:123 2019.)
  37. 37.
    Amoroso S et al. Comput. Softw. Big Sci. 5:12 2021.)
  38. 38.
    Cacciari M et al. J. High Energy Phys. 0804:063 2008.)
  39. 39.
    Cacciari M et al. Eur. Phys. J. C 72:1896 2012.)
  40. 40.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 81:689 2021.)
  41. 41.
    Khachatryan V et al. (CMS Collab.) J. Instrum. 12:P02014 2017.)
  42. 42.
    Sjöstrand T et al. Comput. Phys. Commun. 191:159 2015.)
  43. 43.
    Bahr M et al. Eur. Phys. J. C 58:639 2008.)
  44. 44.
    CMS Collab Report CMS-PAS-JME-13-001 CERN Geneva: 2014.)
  45. 45.
    ATLAS Collab arXiv:2303.17312 [hep-ex] 2023.)
  46. 46.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 78:891 2018. Erratum. Eur. Phys. J. C 82:323 2022.)
    [Google Scholar]
  47. 47.
    CMS Collab arXiv:2211.01456 [hep-ex] 2022.)
  48. 48.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 79:290 2019.)
  49. 49.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 79:970 2019.)
  50. 50.
    Sirunyan AM et al. (CMS Collab.) J. Instrum. 13:P05011 2018.)
  51. 51.
    LHCb Collab J. Instrum. 10:P06013 2015.)
  52. 52.
    Stewart I et al. Phys. Rev. Lett. 105:092002 2010.)
  53. 53.
    Stewart I et al. J. High Energy Phys. 1511:72 2015.)
  54. 54.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 124:202001 2020.)
  55. 55.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 77:466 2017.)
  56. 56.
    Sirunyan AM et al. (CMS Collab.) J. Instrum. 12:P10003 2017.)
  57. 57.
    Bertolini D et al. J. High Energy Phys. 1410:59 2014.)
  58. 58.
    ATLAS Collab Technical Design Report CERN-LHCC-2013-018 CERN Geneva: 2013.)
  59. 59.
    CMS Collab Technical Design Report CERN-LHCC-2020-004 CERN Geneva: 2020.)
  60. 60.
    CMS Collab Technical Design Report CERN-LHCC-2021-007 CERN Geneva: 2021.)
  61. 61.
    ATLAS Collab Technical Design Report CERN-LHCC-2015-020 CERN Geneva: 2015.)
  62. 62.
    CMS Collab Technical Design Report CERN-LHCC-2015-010 CERN Geneva: 2015.)
  63. 63.
    Kiyo Y et al. Eur. Phys. J. C 60:375 2009.)
  64. 64.
    Sumino Y, Yokoya H J. High Energy Phys. 1009:34 2010. Erratum. J. High Energy Phys. 1606:37 2016.)
    [Google Scholar]
  65. 65.
    Czakon M et al. Phys. Rev. Lett. 110:252004 2013.)
  66. 66.
    Catani S et al. J. High Energy Phys. 1907:100 2019.)
  67. 67.
    ATLAS Collab arXiv:2207.01354 [hep-ex] 2022.)
  68. 68.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1803:115 2018.)
  69. 69.
    ATLAS/CMS Collab Report CERN-EP-2021-222 CERN Geneva: 2022.)
  70. 70.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 80:528 2020.)
  71. 71.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 79:368 2019.)
  72. 72.
    Aaij R et al. (LHCb Collab.) Phys. Lett. B 767:110 2017.)
  73. 73.
    Aaij R et al. (LHCb Collab.) J. High Energy Phys. 1808:174 2018.)
  74. 74.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 119:242001 2017.)
  75. 75.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 125:222001 2020.)
  76. 76.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 80:658 2020.)
  77. 77.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 1911:150 2019.)
  78. 78.
    CMS Collab arXiv:2207.02270 [hep-ex] 2022.)
  79. 79.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 803:135263 2020.)
  80. 80.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. D 102:092013 2020.)
  81. 81.
    ATLAS Collab Nature 607:52 2022. Erratum. Nature 612:E24 2022.)
    [Google Scholar]
  82. 82.
    CMS Collab Nature 607:60 2022.)
  83. 83.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2206:63 2022.)
  84. 84.
    Khachatryan V et al. (CMS Collab.) Phys. Rev. D 94:052006 2016.)
  85. 85.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1902:149 2019.)
  86. 86.
    Denner A et al. Phys. Rev. Lett. 106:052001 2011.)
  87. 87.
    Bevilacqua G et al. J. High Energy Phys. 1102:83 2011.)
  88. 88.
    Denner A, Pellen M J. High Energy Phys. 1608:155 2016.)
  89. 89.
    Behring A et al. Phys. Rev. Lett. 123:082001 2019.)
  90. 90.
    Czakon M et al. J. High Energy Phys. 2105:212 2021.)
  91. 91.
    Denner A et al. Nucl. Phys. B 560:33 1999.)
  92. 92.
    Mazzitelli J et al. Phys. Rev. Lett. 127:062001 2021.)
  93. 93.
    Mazzitelli J et al. J. High Energy Phys. 2204:79 2022.)
  94. 94.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 77:804 2017.)
  95. 95.
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. Lett. 121:152002 2018.)
  96. 96.
    Catani S, Webber BR, Marchesini G. Nucl. Phys. B 349:635 1991.)
  97. 97.
    ATLAS Collab arXiv:2209.07874 [hep-ex] 2022.)
  98. 98.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 79:1017 2019.)
  99. 99.
    Afik Y et al. Eur. Phys. J. Plus 136:907 2021.)
  100. 100.
    Bernreuther W et al. J. High Energy Phys. 1512:26 2015.)
  101. 101.
    Severi C et al. Eur. Phys. J. C 82:285 2022.)
  102. 102.
    Brandenburg A, Si ZG, Uwer P. Phys. Lett. B 539:235 2002.)
  103. 103.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1703:113 2017.)
  104. 104.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. D 100:072002 2019.)
  105. 105.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 80:754 2020.)
  106. 106.
    Khachatryan V et al. (CMS Collab.) Phys. Rev. D 93:052007 2016.)
  107. 107.
    ATLAS/CMS Collab LHCTopWG summary plots. CERN https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots 2023.)
    [Google Scholar]
  108. 108.
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 756:228 2016.)
  109. 109.
    ATLAS Collab arXiv:2209.08990 [hep-ex] 2022.)
  110. 110.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1609:27 2016.)
  111. 111.
    Kant P et al. Comput. Phys. Commun. 191:74 2015.)
  112. 112.
    Aliev M et al. Comput. Phys. Commun. 182:1034 2011.)
  113. 113.
    Aaboud G et al. (ATLAS/CMS Collab.) J. High Energy Phys. 1905:88 2019.)
  114. 114.
    Aaboud G et al. (ATLAS Collab.) J. High Energy Phys. 1704:86 2017.)
  115. 115.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 800:135042 2020.)
  116. 116.
    Berger EL, Gao J, Zhu HX. J. High Energy Phys. 1711:158 2017.)
  117. 117.
    Brucherseifer M et al. Phys. Lett. B 736:58 2014.)
  118. 118.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 77:531 2017.)
  119. 119.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 80:370 2020.)
  120. 120.
    Schwienhorst R et al. Phys. Rev. D 83:034019 2011.)
  121. 121.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1704:124 2017.)
  122. 122.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1604:73 2016.)
  123. 123.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 1604:23 2016.)
  124. 124.
    Kidonakis N. Phys. Rev. D 82:054018 2010.)
  125. 125.
    Kidonakis N. arXiv:1311.0283 [hep-ph] 2014.)
  126. 126.
    Frixione S et al. J. High Energy Phys. 0807:029 2008.)
  127. 127.
    Belyaev AS, Boos EE, Dudko LV. Phys. Rev. D 59:075001 1999.)
  128. 128.
    White CD et al. J. High Energy Phys. 0911:074 2009.)
  129. 129.
    Tait T. Phys. Rev. D 61:034001 1999.)
  130. 130.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1801:63 2018.)
  131. 131.
    CMS Collab arXiv:2208.00924 [hep-ex] 2022.)
  132. 132.
    Tumasyan A et al. (CMS Collab.) J. High Energy Phys. 2111:111 2021.)
  133. 133.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 78:186 2018.)
  134. 134.
    Ježo T et al. Eur. Phys. J. C 76:691 2016.)
  135. 135.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 808:135609 2020.)
  136. 136.
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 736:33 2014.)
  137. 137.
    Aad G et al. (ATLAS Collab.) Phys. Rev. D 91:072007 2015.)
  138. 138.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1711:86 2017.)
  139. 139.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 79:382 2019.)
  140. 140.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1710:6 2017.)
  141. 141.
    Tumasyan A et al. (CMS Collab.) J. High Energy Phys. 2112:180 2021.)
  142. 142.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2009.49 2020.)
  143. 143.
    Tumasyan A et al. (CMS Collab.) J. High Energy Phys. 2205:91 2022.)
  144. 144.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 121:221802 2018.)
  145. 145.
    ATLAS Collab arXiv:2302.01283 [hep-ex] 2023.)
  146. 146.
    CMS Collab arXiv:2208.12837 [hep-ex] 2022.)
  147. 147.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 1511:172 2015.)
  148. 148.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1601:96 2016.)
  149. 149.
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. D 99:072009 2019.)
  150. 150.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 77:40 2017.)
  151. 151.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 81:737 2021.)
  152. 152.
    Chatrchyan S et al. (CMS Collab.) Phys. Rev. Lett. 110:172002 2013.)
  153. 153.
    Khachatryan V et al. (CMS Collab.) Eur. Phys. J. C 74:3060 2014.)
  154. 154.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1808:11 2018.)
  155. 155.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2003:56 2020.)
  156. 156.
    Tonon N et al. (CMS Collab.) J. High Energy Phys. 2112:83 2021.)
  157. 157.
    Aaboud M et al. (ATLAS Collab.) Phys. Lett. B 780:557 2018.)
  158. 158.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2007:124 2020.)
  159. 159.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 779:358 2018.)
  160. 160.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 122:132003 2019.)
  161. 161.
    CMS Collab arXiv:2208.06485 [hep-ex] 2022.)
  162. 162.
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. D 97:072016 2018.)
  163. 163.
    Aaboud M et al. (ATLAS Collab.) Phys. Lett. B 784:173 2018.)
  164. 164.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2206:97 2022.)
  165. 165.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1903:26 2019.)
  166. 166.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 120:231801 2018.)
  167. 167.
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. D 97:072003 2018.)
  168. 168.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 81:378 2021.)
  169. 169.
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 125:061802 2020.)
  170. 170.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 125:061801 2020.)
  171. 171.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. D 99:092005 2019.)
  172. 172.
    Melnikov K et al. Phys. Rev. D 83:074013 2011.)
  173. 173.
    Alwall J et al. J. High Energy Phys. 1407:79 2014.)
  174. 174.
    Kulesza A et al. Eur. Phys. J. C 80:428 2020.)
  175. 175.
    de Florian D et al., eds. ( LHC Higgs Cross Section Working Group. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector Geneva: CERN 2017.)
  176. 176.
    Frixione S et al. J. High Energy Phys. 1506:184 2015.)
  177. 177.
    Frederix R et al. J. High Energy Phys. 1807:185 2018. Erratum. J. High Energy Phys. 2111:85 2021.)
    [Google Scholar]
  178. 178.
    Schulze M, Soreq Y. Eur. Phys. J. C 76:466 2016.)
  179. 179.
    Aguilar-Saavedra JA et al. J. High Energy Phys. 1404:188 2014.)
  180. 180.
    Denner A, Pelliccioli G. Eur. Phys. J. C 81:354 2021.)
  181. 181.
    Broggio A et al. J. High Energy Phys. 1908:39 2019.)
  182. 182.
    Bevilacqua G et al. Phys. Rev. D 105:014018 2022.)
  183. 183.
    ATLAS/CMS Collab., LHC Higgs Comb. Group Report CMS-NOTE-2011-005/ATL-PHYS-PUB-2011-011 CERN Geneva: 2011.)
  184. 184.
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 710:49 2012.)
  185. 185.
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 716:30 2012.)
  186. 186.
    Dainese A et al., eds. Physics of the HL-LHC, and Perspectives at the HE-LHC Geneva: CERN 2019.)
  187. 187.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1904:46 2019.)
  188. 188.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 803:135285 2020.)
  189. 189.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2007:125 2020.)
  190. 190.
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 820:136565 2021.)
  191. 191.
    ATLAS Collab arXiv:2211.16345 [physics.data-an] 2022.)
  192. 192.
    Tumasyan A et al. (CMS Collab.) J. Instrum. 17:P03014 2022.)
  193. 193.
    Denner A et al. Phys. Rev. D 104:056018 2021.)
  194. 194.
    Bevilacqua G et al. Phys. Rev. D 107:014028 2023.)
  195. 195.
    Garzelli MV et al. J. High Energy Phys. 1503:83 2015.)
  196. 196.
    Ježo T, Kraus M. Phys. Rev. D 105:114024 2022.)
  197. 197.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2111:118 2021.)
  198. 198.
    CMS Collab arXiv:2303.03864 [hep-ex] 2023.)
  199. 199.
    Blekman F et al. Universe 8:638 2022.)
  200. 200.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 80:1085 2020.)
  201. 201.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1911:82 2019.)
  202. 202.
    ATLAS Collab arXiv:2303.15061 [hep-ex] 2023.)
  203. 203.
    CMS Collab Report CMS-PAS-TOP-22-013 CERN Geneva: 2023.)
  204. 204.
    Cao QH et al. Phys. Rev. D 95:053004 2017.)
  205. 205.
    Sirunyan AM et al. (CMS Collab.) Eur. Phys. J. C 80:75 2020.)
  206. 206.
    Englert C et al. J. High Energy Phys. 1909:41 2019.)
  207. 207.
    Barducci D et al. Report CERN-LPCC-2018-01 CERN Geneva: 2018.)
  208. 208.
    Aguilar-Saavedra JA. Nucl. Phys. B 812:181 2009.)
  209. 209.
    Zhang C, Willenbrock S. Phys. Rev. D 83:034006 2011.)
  210. 210.
    ATLAS Collab Report ATL-PHYS-PUB-2022-037 CERN Geneva: 2022.)
  211. 211.
    Brivio I et al. J. High Energy Phys. 2002:131 2020.)
  212. 212.
    Ellis J et al. J. High Energy Phys. 2104:279 2021.)
  213. 213.
    Ethier J et al. J. High Energy Phys. 2111:89 2021.)
  214. 214.
    Miralles V et al. J. High Energy Phys. 2202:32 2022.)
  215. 215.
    Aguilar Saavedra JA et al. arXiv:1802.07237 [hep-ph] 2018.)
  216. 216.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2103:95 2021.)
  217. 217.
    Aad G et al. (ATLAS Collab.) J. High Energy Phys. 2211:40 2022.)
  218. 218.
    Aaltonen T et al. (CDF Collab.) Phys. Rev. D 87:092002 2013.)
  219. 219.
    Abazov VM et al. (D0 Collab.) Phys. Rev. D 90:072011 2014.)
  220. 220.
    Czakon M et al. Phys. Rev. D 98:014003 2018.)
  221. 221.
    ATLAS Collab arXiv:2208.12095 [hep-ex] 2022.)
  222. 222.
    Aaboud M et al. (ATLAS/CMS Collab.) J. High Energy Phys. 1804:33 2018.)
  223. 223.
    CMS Collab arXiv:2208.02751 [hep-ex] 2022.)
  224. 224.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 82:374 2022.)
  225. 225.
    ATLAS Collab 2212.10552 [hep-ex] 2022.)
  226. 226.
    CMS Collab arXiv:2205.07434 [hep-ex] 2022.)
  227. 227.
    CMS Collab arXiv:2205.02314 [hep-ex] 2022.)
  228. 228.
    Aad G et al.CMS/ATLAS Collab J. High Energy Phys. 2008:51 2020.)
  229. 229.
    ATLAS Collab arXiv:2209.14903 [hep-ex] 2022.)
  230. 230.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1712:17 2017.)
  231. 231.
    Gedalia O et al. Phys. Rev. Lett. 110:232002 2013.)
  232. 232.
    Aaboud M et al. (ATLAS Collab.) J. High Energy Phys. 1702:71 2017.)
  233. 233.
    Abazov VM et al. (D0 Collab.) Phys. Rev. D 82:032001 2010.)
  234. 234.
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 770:50 2017.)
  235. 235.
    Abazov VM et al. (D0 Collab.) Phys. Rev. Lett. 108:261603 2012.)
  236. 236.
    ATLAS Collab arXiv:2208.11415 [hep-ex] 2022.)
  237. 237.
    Tumasyan A et al. (CMS Collab.) Phys. Rev. Lett. 129:032001 2022.)
  238. 238.
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 842:137379 2023.)
  239. 239.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1604:35 2016.)
  240. 240.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 82:334 2022.)
  241. 241.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1702:28 2017.)
  242. 242.
    ATLAS Collab Report ATLAS-CONF-2021-049 CERN Geneva: 2021.)
  243. 243.
    CMS Collab Report CMS-PAS-TOP-17-017 CERN Geneva: 2017.)
  244. 244.
    Sirunyan AM et al. J. High Energy Phys. 1707:3 2017.)
  245. 245.
    Agashe K et al. arXiv:1311.2028 [hep-ph] 2013.)
  246. 246.
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 731:173 2014.)
  247. 247.
    ATLAS Collab Report ATLAS-CONF-2023-001 CERN Geneva: 2023.)
  248. 248.
    Tumasyan A et al. (CMS Collab.) J. High Energy Phys. 2206:82 2022.)
  249. 249.
    Tumasyan A et al. (CMS Collab.) Phys. Rev. D 105:072008 2022.)
  250. 250.
    ATLAS Collab Nat. Phys. 17:813 2021.)
  251. 251.
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 71:1577 2011.)
  252. 252.
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 695:424 2011.)
  253. 253.
    Czakon M et al. J. High Energy Phys. 1710:186 2017.)
/content/journals/10.1146/annurev-nucl-102419-052854
Loading
/content/journals/10.1146/annurev-nucl-102419-052854
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error