1932

Abstract

In the past decade, the Large Hadron Collider (LHC) has probed a higher energy scale than ever before. Most models of physics beyond the standard model (BSM) predict the production of new heavy particles; the LHC results have excluded lower masses of such particles. This makes the high-mass regions especially interesting for current and future searches. In most BSM scenarios of interest, the new heavy resonances decay to standard model particles. In a subset of these models, the new particles have large couplings to the top quark, the and bosons, or the Higgs boson. The top quark and , , and Higgs bosons often decay to quarks, giving rise to jets of particles with substructure; event selection based on substructure is used to suppress standard model backgrounds. This review covers the key concepts in experimental searches based on the jet substructure and discusses recent results from the ATLAS and CMS experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-055402
2022-09-26
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-102419-055402.html?itemId=/content/journals/10.1146/annurev-nucl-102419-055402&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dugan MJ, Georgi H, Kaplan DB. Nucl. Phys. B 254:299 1985.)
    [Google Scholar]
  2. 2.
    Hill CT, Parke SJ. Phys. Rev. D 49:4454 1994.)
    [Google Scholar]
  3. 3.
    Hill CT. Phys. Lett. B 345:483 1995.)
    [Google Scholar]
  4. 4.
    Albert A et al. Phys. Dark Univ. 26:100377 2019.)
    [Google Scholar]
  5. 5.
    Lillie B, Randall L, Wang LT. J. High Energy Phys. 0709:074 2007.)
    [Google Scholar]
  6. 6.
    Agashe K, Davoudiasl H, Perez G, Soni A. Phys. Rev. D 76:036006 2007.)
    [Google Scholar]
  7. 7.
    Fitzpatrick AL, Kaplan J, Randall L, Wang LT. J. High Energy Phys. 0709:013 2007.)
    [Google Scholar]
  8. 8.
    Pappadopulo D, Thamm A, Torre R, Wulzer A. J. High Energy Phys. 1409:60 2014.)
    [Google Scholar]
  9. 9.
    Barger VD, Keung WY, Ma E. Phys. Rev. D 22:727 1980.)
    [Google Scholar]
  10. 10.
    Aad G et al. J. Instrum. 3:S08003 2008.)
    [Google Scholar]
  11. 11.
    Chatrchyan S et al. J. Instrum. 3:S08004 2008.)
    [Google Scholar]
  12. 12.
    Sirunyan AM et al. J. Instrum. 12:P10003 2017.)
    [Google Scholar]
  13. 13.
    Cacciari M, Salam GP, Soyez G. J. High Energy Phys. 0804: 063: 2008.)
    [Google Scholar]
  14. 14.
    Cacciari M, Salam GP, Soyez G. Eur. Phys. J. C 72:1896 2012.)
    [Google Scholar]
  15. 15.
    Aad G et al. Eur. Phys. J. C 77:490 2017.)
    [Google Scholar]
  16. 16.
    ATLAS Collab Improving jet substructure performance in ATLAS using Track-CaloClusters Rep. ATL-PHYS-PUB-2017-015 CERN Geneva: 2017.)
    [Google Scholar]
  17. 17.
    Aaboud M et al. Eur. Phys. J. C 77:7466 2017.)
    [Google Scholar]
  18. 18.
    Krohn D, Thaler J, Wang LT. J. High Energy Phys. 1002:84 2010.)
    [Google Scholar]
  19. 19.
    Ellis SD, Vermilion CK, Walsh JR. Phys. Rev. D 81:094023 2010.)
    [Google Scholar]
  20. 20.
    Larkoski AJ, Marzani S, Soyez G, Thaler J. J. High Energy Phys. 1405:146 2014.)
    [Google Scholar]
  21. 21.
    Dasgupta M, Fregoso A, Marzani S, Salam GP. J. High Energy Phys. 1309:29 2013.)
    [Google Scholar]
  22. 22.
    Aad G et al. Eur. Phys. J. C 76:11581 2016.)
    [Google Scholar]
  23. 23.
    Sirunyan AM et al. J. Instrum. 15:09P09018 2020.)
    [Google Scholar]
  24. 24.
    Bertolini D, Harris P, Low M, Tran N. J. High Energy Phys. 1410:59 2014.)
    [Google Scholar]
  25. 25.
    Dolen J et al. J. High Energy Phys. 1605:156 2016.)
    [Google Scholar]
  26. 26.
    Sirunyan AM et al. J. High Energy Phys. 1801:97 2018.)
    [Google Scholar]
  27. 27.
    CMS Collab Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques Rep. CMS-DP-2020-002/CERN-CMS-DP-2020-002 CERN Geneva: 2020.)
    [Google Scholar]
  28. 28.
    Thaler J, Van Tilburg K. J. High Energy Phys. 1103:15 2011.)
    [Google Scholar]
  29. 29.
    Thaler J, Van Tilburg K. J. High Energy Phys. 1202:93 2012.)
    [Google Scholar]
  30. 30.
    Larkoski AJ, Salam GP, Thaler J. J. High Energy Phys. 1306:108 2013.)
    [Google Scholar]
  31. 31.
    Larkoski AJ, Moult I, Neill D. J. High Energy Phys. 1412:9 2014.)
    [Google Scholar]
  32. 32.
    Larkoski AJ, Moult I, Neill D. J. High Energy Phys. 1605:117 2016.)
    [Google Scholar]
  33. 33.
    ATLAS Collab Optimisation and performance studies of the ATLASb-tagging algorithms for the 2017–18 LHC run Rep. ATL-PHYS-PUB-2017-013 CERN Geneva: 2017.)
    [Google Scholar]
  34. 34.
    Aad G et al. Eur. Phys. J. C 79:11970 2019.)
    [Google Scholar]
  35. 35.
    Sirunyan AM et al. J. Instrum. 13:P05011 2018.)
    [Google Scholar]
  36. 36.
    Bols E et al. J. Instrum. 15:P12012 2020.)
    [Google Scholar]
  37. 37.
    CMS Collab Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector CMS Detect. Perform. Note CMS-DP-2018-058 CERN Geneva: 2018.)
    [Google Scholar]
  38. 38.
    Aaboud M et al. Eur. Phys. J. C 79:5375 2019.)
    [Google Scholar]
  39. 39.
    Thaler J, Wang LT. J. High Energy Phys. 0807:092 2008.)
    [Google Scholar]
  40. 40.
    Chen C. Phys. Rev. D 85:034007 2012.)
    [Google Scholar]
  41. 41.
    Sirunyan AM et al. J. Instrum. 15:06P06005 2020.)
    [Google Scholar]
  42. 42.
    CMS Collab A Cambridge-Aachen (C-A) based jet algorithm for boosted top-jet tagging Rep. CMS-PAS-JME-09-001 CERN Geneva: 2009.)
    [Google Scholar]
  43. 43.
    CMS Collab Boosted top jet tagging at CMS Rep. CMS-PAS-JME-13-007 CERN Geneva: 2014.)
    [Google Scholar]
  44. 44.
    Kaplan DE, Rehermann K, Schwartz MD, Tweedie B. Phys. Rev. Lett. 101:142001 2008.)
    [Google Scholar]
  45. 45.
    Dokshitzer YL, Leder GD, Moretti S, Webber BR. J. High Energy Phys. 9708:001 1997.)
    [Google Scholar]
  46. 46.
    Lapsien T, Kogler R, Haller J. Eur. Phys. J. C 76:11600 2016.)
    [Google Scholar]
  47. 47.
    Butterworth JM, Davison AR, Rubin M, Salam GP. Phys. Rev. Lett. 100:242001 2008.)
    [Google Scholar]
  48. 48.
    Chen C. Phys. Rev. D 92:9093010 2015.)
    [Google Scholar]
  49. 49.
    Catani S et al. Phys. Lett. B 269:432 1991.)
    [Google Scholar]
  50. 50.
    Qu H, Gouskos L. Phys. Rev. D 101:5056019 2020.)
    [Google Scholar]
  51. 51.
    Branco GC et al. Phys. Rep. 516:1 2012.)
    [Google Scholar]
  52. 52.
    Harris RM, Jain S. Eur. Phys. J. C 72:2072 2012.)
    [Google Scholar]
  53. 53.
    Randall L, Sundrum R. Phys. Rev. Lett. 83:3370 1999.)
    [Google Scholar]
  54. 54.
    Chatrchyan S et al. J. High Energy Phys. 1209:29 2012. Erratum J. High Energy Phys. 1403:132 2014.)
    [Google Scholar]
  55. 55.
    Aad G et al. J. High Energy Phys. 1209:41 2012.)
    [Google Scholar]
  56. 56.
    Aad G et al. J. High Energy Phys. 2010:61 2020.)
    [Google Scholar]
  57. 57.
    Sirunyan AM et al. J. High Energy Phys. 1904:31 2019.)
    [Google Scholar]
  58. 58.
    ATLAS Collab Search for single vector-like B quark production and decay via B bH() in pp collisions at= 13 TeV with the ATLAS detector Rep. ATLAS-CONF-2021-018 CERN Geneva: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-018/ 2021.)
    [Google Scholar]
  59. 59.
    Tumasyan A et al. (CMS Collab.). J. High Energy Phys. 2205:93 2022.)
    [Google Scholar]
  60. 60.
    Sirunyan AM et al. J. High Energy Phys. 2112:106 2021.)
    [Google Scholar]
  61. 61.
    Tumasyan A et al. (CMS Collab.). J. High Energy Phys. 2204:48 2022.)
    [Google Scholar]
  62. 62.
    Artoisenet P et al. J. High Energy Phys. 1311:43 2013.)
    [Google Scholar]
  63. 63.
    Tumasyan A et al. (CMS Collab.). Phys. Lett. B 826:136888 2022.)
    [Google Scholar]
  64. 64.
    ATLAS Collab Search for high-massandresonances in the hadronic final state using 139 fb-1of pp collisions at= 13 TeV with the ATLAS Detector Rep. ATLAS-CONF-2021-041 CERN Geneva: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-041 2021.)
    [Google Scholar]
  65. 65.
    Aad G et al. Phys. Rev. Lett. 125:251802 2020.)
    [Google Scholar]
  66. 66.
    Sirunyan AM et al. Phys. Rev. Lett. 122:8081804 2019.)
    [Google Scholar]
  67. 67.
    ATLAS Collab Search for heavy resonances decaying into a W boson and a Higgs boson in final states with leptons and b-jets in 139 fb-1of pp collisions at= 13 TeV with the ATLAS detector Rep. ATLAS-CONF-2021-026 CERN Geneva: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-026 2021.)
    [Google Scholar]
  68. 68.
    Tumasyan A et al. (CMS Collab.). Phys. Rev. D 105:032008 2022.)
    [Google Scholar]
  69. 69.
    Aad G et al. J. High Energy Phys. 2011:163 2020.)
    [Google Scholar]
  70. 70.
    Sirunyan AM et al. J. Instrum. 13:10P10005 2018.)
    [Google Scholar]
  71. 71.
    Tumasyan A et al. J. High Energy Phys. 2205:5 2022.)
    [Google Scholar]
  72. 72.
    Aad G et al. (ATLAS Collab.). Phys. Rev. D 105:092002 2022.)
    [Google Scholar]
  73. 73.
    CMS Collab Search for resonant Higgs boson pair production in four b quark final state using large-area jets in proton-proton collisions at= 13 TeV Rep. CMS-PAS-B2G-20-004 CERN Geneva: 2021.)
    [Google Scholar]
  74. 74.
    CMS Collab Search for a massive scalar resonance decaying to a light scalar and a Higgs boson in the four b quark final state with boosted topology Rep. CMS-PAS-B2G-21-003 CERN Geneva: 2021.)
    [Google Scholar]
  75. 75.
    Dorsch GC, Huber SJ, Mimasu K, No JM. Phys. Rev. D 93:11115033 2016.)
    [Google Scholar]
  76. 76.
    Kling F, No JM, Su S. J. High Energy Phys. 1609:93 2016.)
    [Google Scholar]
  77. 77.
    Baum S, Shah NR. J. High Energy Phys. 1812:44 2018.)
    [Google Scholar]
  78. 78.
    Ellwanger U, Rodríguez-Vázquez M. J. High Energy Phys. 1711:8 2017.)
    [Google Scholar]
  79. 79.
    Baum S, Shah NR, Freese K. J. High Energy Phys. 1904:11 2019.)
    [Google Scholar]
  80. 80.
    Robens T, Stefaniak T, Wittbrodt J. Eur. Phys. J. C 80:2151 2020.)
    [Google Scholar]
  81. 81.
    CMS Collab Search for new particles in an extended Higgs sector in the four b quark final state at= 13 TeV Rep. CMS-PAS-B2G-20-003 CERN Geneva: 2021.)
    [Google Scholar]
  82. 82.
    CMS Collab Search for W′ decaying to a vector-like quark and a top or bottom quark in the all-jets final state Rep. CMS-PAS-B2G-20-002 CERN Geneva: 2021.)
    [Google Scholar]
  83. 83.
    CMS Collab Search for resonances decaying to three W bosons in proton-proton collisions at= 13 TeV Rep. CMS-B2G-20-001 CERN Geneva: 2022.)
    [Google Scholar]
  84. 84.
    Tumasyan A et al. (CMS Collab.). Phys. Rev. D 129:021802 2022.)
    [Google Scholar]
  85. 85.
    Tumasyan A et al. (CMS Collab.). Search for high-mass resonances decaying to a jet and a Lorentz-boosted resonance in proton-proton collisions at= 13 TeV Rep. CMS-EXO-20-007/CERN-EP-2021-238 CERN Geneva: 2022.)
    [Google Scholar]
  86. 86.
    Tumasyan A et al. (CMS Collab.). J. High Energy Phys. 2204:47 2022.)
    [Google Scholar]
  87. 87.
    Pati JC, Salam A. Phys. Rev. D 10:1275 1974.)
    [Google Scholar]
  88. 88.
    Mohapatra RN, Pati JC. Phys. Rev. D 11:92558 1975.)
    [Google Scholar]
  89. 89.
    Senjanovic G, Mohapatra RN. Phys. Rev. D 12:51502 1975.)
    [Google Scholar]
  90. 90.
    Keung WY, Senjanović G. Phys. Rev. Lett. 50:191427 1983.)
    [Google Scholar]
  91. 91.
    Mohapatra RN, Senjanović G. Phys. Rev. Lett. 44:14912 1980.)
    [Google Scholar]
  92. 92.
    Das A, Dev PSB, Mohapatra RN. Phys. Rev. D 97:1015018 2018.)
    [Google Scholar]
  93. 93.
    Gell-Mann M, Ramond P, Slansky R. Conf. Proc. C 790927:315 1979.)
    [Google Scholar]
  94. 94.
    Rehermann K, Tweedie B. J. High Energy Phys. 1103:59 2011.)
    [Google Scholar]
  95. 95.
    Brust C et al. J. High Energy Phys. 1504:79 2015.)
    [Google Scholar]
  96. 96.
    Aad G et al. Phys. Rev. Lett. 125:13131801 2020.)
    [Google Scholar]
  97. 97.
    Collins JH, Howe K, Nachman B. Phys. Rev. Lett. 121:24241803 2018.)
    [Google Scholar]
  98. 98.
    Andreassen A, Nachman B, Shih D. Phys. Rev. D 101:9095004 2020.)
    [Google Scholar]
  99. 99.
    Benkendorfer K, Pottier LL, Nachman B. Phys. Rev. D 104:3035003 2021.)
    [Google Scholar]
  100. 100.
    Amram O, Suarez CM. J. High Energy Phys. 2101:153 2021.)
    [Google Scholar]
  101. 101.
    Nachman B, Shih D. Phys. Rev. D 101:075042 2020.)
    [Google Scholar]
  102. 102.
    Kasieczka G, Nachman B, Schwartz MD, Shih D. Phys. Rev. D 103:3035021 2021.)
    [Google Scholar]
  103. 103.
    Aaboud Met al(ATLAS Collab. Phys. Lett. B 781:327( 2018.)
    [Google Scholar]
  104. 104.
    Sirunyan AMet al(CMS Collab. Phys. Lett. B 820:136535( 2021.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102419-055402
Loading
/content/journals/10.1146/annurev-nucl-102419-055402
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error