1932

Abstract

We review the theoretical and experimental progress in the Glauber model of multiple nucleon and/or parton scatterings after the last 10–15 years of operation with proton and nuclear beams at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. The main developments and the state of the art of the field are summarized. These encompass measurements of the inclusive inelastic proton and nuclear cross sections, advances in the description of the proton and nuclear density profiles and their fluctuations, inclusion of subnucleonic degrees of freedom, experimental procedures and issues related to the determination of the collision centrality, validation of the binary scaling prescription for hard scattering cross sections, and constraints on transport properties of quark–gluon matter from varying initial-state conditions in relativistic hydrodynamics calculations. These advances confirm the validity and usefulness of the Glauber formalism for quantitative studies of quantum chromodynamics matter produced in high-energy collisions of systems, from protons to uranium nuclei, of vastly different size.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-060007
2021-09-21
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-060007.html?itemId=/content/journals/10.1146/annurev-nucl-102419-060007&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Busza W, Rajagopal K, van der Schee W. Annu. Rev. Nucl. Part. Sci. 68:339 2018.
    [Google Scholar]
  2. 2. 
    Borsanyi S et al. Phys. Lett. B 730:99 2014.
  3. 3. 
    Bazavov A et al. (HotQCD Collab.) Phys. Rev. D 90:094503 2014.
  4. 4. 
    d'Enterria D. J. Phys. G 34:S53 2007.
  5. 5. 
    Martin P, Glauber R. Phys. Rev. 109:1307 1958.
  6. 6. 
    Glauber RJ, Matthiae G. Nucl. Phys. B 21:135 1970.
  7. 7. 
    Czyz W, Maximon L. Ann. Phys. 52:59 1969.
  8. 8. 
    Bialas A, Bleszynski M, Czyz W. Nucl. Phys. B 111:461 1976.
  9. 9. 
    Bialas A, Bleszynski M, Czyz W. Acta Phys. Polon. B 8:389 1977.
  10. 10. 
    Wang XN, Gyulassy M. Phys. Rev. D 44:3501 1991.
  11. 11. 
    Broniowski W, Rybczynski M, Bozek P. Comput. Phys. Commun. 180:69 2009.
  12. 12. 
    Alver B, Baker M, Loizides C, Steinberg P. arXiv:0805.4411 [nucl-ex] 2008.
  13. 13. 
    Alvioli M, Drescher HJ, Strikman M. Phys. Lett. B 680:225 2009.
  14. 14. 
    Rybczynski M, Stefanek G, Broniowski W, Bozek P. Comput. Phys. Commun. 185:1759 2014.
  15. 15. 
    Loizides C, Nagle J, Steinberg P. SoftwareX 1–2:13 2015.
  16. 16. 
    Loizides C. Phys. Rev. C 94:024914 2016.
  17. 17. 
    Mitchell JT, Perepelitsa DV, Tannenbaum MJ, Stankus PW. Phys. Rev. C 93:054910 2016.
  18. 18. 
    Loizides C, Kamin J, d'Enterria D Phys. Rev. C 97:054910 2018. Phys. Rev. C 99:019901 2019.); Loizides C, Kamin J, d'Enterria D TGlauberMC, version 3. Modeling Software https://tglaubermc.hepforge.org/ 2017.
    [Google Scholar]
  19. 19. 
    Bożek P, Broniowski W, Rybczynski M, Stefanek G. Comput. Phys. Commun. 245:106850 2019.
  20. 20. 
    De Jager CW, De Vries H, De Vries C. At. Data Nucl. Data Tables 14:479 1974.
  21. 21. 
    De Vries H, De Jager CW, De Vries C. At. Data Nucl. Data Tables 36:495 1987.
  22. 22. 
    Heinz U, Snellings R. Annu. Rev. Nucl. Part. Sci. 63:123 2013.
  23. 23. 
    Wang XN, Gyulassy M. Phys. Rev. Lett. 86:3496 2001.
  24. 24. 
    Acharya S et al. (ALICE Collab.) Phys. Rev. C 101:044907 2020.
  25. 25. 
    Ollitrault JY. Phys. Rev. D 46:229 1992.
  26. 26. 
    Romatschke P. Int. J. Mod. Phys. E 19:1 2010.
  27. 27. 
    Teaney DA. Viscous hydrodynamics and the quark gluon plasma. Quark-Gluon Plasma 4 RC Hwa, X-N Wang 207–66 Singapore: World Sci 2010.
    [Google Scholar]
  28. 28. 
    Luzum M, Romatschke P. Phys. Rev. Lett. 103:262302 2009.
  29. 29. 
    Schenke B, Jeon S, Gale C Phys. Rev. Lett. 106:042301 2011.
  30. 30. 
    Weller RD, Romatschke P. Phys. Lett. B 774:351 2017.
  31. 31. 
    Alver B, Roland G. Phys. Rev. C 81:054905 2010.). Erratum. Phys. Rev. C 82:039903 2010.
  32. 32. 
    Aamodt K et al. (ALICE Collab.) Phys. Rev. Lett. 107:032301 2011.
  33. 33. 
    Adare A et al. (PHENIX Collab.) Phys. Rev. Lett. 107:252301 2011.
  34. 34. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. C 86:014907 2012.
  35. 35. 
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 724:213 2013.
  36. 36. 
    Dainese A, Loizides C, Paic G. Eur. Phys. J. C 38:461 2005.
  37. 37. 
    Lokhtin I, Snigirev A. Eur. Phys. J. C 45:211 2006.
  38. 38. 
    Djordjevic M, Zigic D, Djordjevic M, Auvinen J. Phys. Rev. C 99:061902 2019.
  39. 39. 
    d'Enterria D. Jet quenching. Landolt-Börnstein—Group I Elementary Particles, Nuclei and Atoms, Vol. 23: Relativistic Heavy Ion Physics R Stock Berlin: Springer https://doi.org/10.1007/978-3-642-01539-7_16 2010.
    [Crossref] [Google Scholar]
  40. 40. 
    Baltz A Phys. Rep. 458:1 2008.
  41. 41. 
    Miller ML, Reygers K, Sanders SJ, Steinberg P. Annu. Rev. Nucl. Part. Sci. 57:205 2007.
  42. 42. 
    Alver B et al. (PHOBOS Collab.) Phys. Rev. C 83:024913 2011.
  43. 43. 
    Abada A et al. (FCC Collab.) Eur. Phys. J. Spec. Top. 228:755 2019.
  44. 44. 
    Tanabashi M et al. (Part. Data Group) Phys. Rev. D 98:030001 2018.
  45. 45. 
    Alner GJ et al. (UA5 Collab.) Z. Phys. C 32:153 1986.
  46. 46. 
    Amos NA et al. (E710 Collab.) Phys. Lett. B 243:158 1990.
  47. 47. 
    Amos NA et al. (E710 Collab.) Phys. Rev. Lett. 68:2433 1992.
  48. 48. 
    Abe F et al. (CDF Collab.) Phys. Rev. D 50:5550 1994.
  49. 49. 
    Abe F et al. (CDF Collab.) Phys. Rev. D 50:5518 1994.
  50. 50. 
    Adam J et al. (STAR Collab.) Phys. Lett. B 808:135663 2020.
  51. 51. 
    Abelev B et al. (ALICE Collab.) Eur. Phys. J. C 73:2456 2013.
  52. 52. 
    Aad G et al. (ATLAS Collab.) Nat. Commun. 2:463 2011.
  53. 53. 
    Aad G et al. (ATLAS Collab.) Nucl. Phys. B 889:486 2014.
  54. 54. 
    Aaboud M et al. (ATLAS Collab.) Phys. Lett. B 761:158 2016.
  55. 55. 
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. Lett. 117:182002 2016.
  56. 56. 
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 722:5 2013.
  57. 57. 
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1807:161 2018.
  58. 58. 
    Aaij R et al. (LHCb Collab.) J. High Energy Phys. 1502:129 2015.
  59. 59. 
    Aaij R et al. (LHCb Collab.) J. High Energy Phys. 1806:100 2018.
  60. 60. 
    Antchev G et al. (TOTEM Collab.) Europhys. Lett. 96:21002 2011.
  61. 61. 
    Antchev G et al. (TOTEM Collab.) Europhys. Lett. 101:21004 2013.
  62. 62. 
    Antchev G et al. (TOTEM Collab.) Phys. Rev. Lett. 111:012001 2013.
  63. 63. 
    Antchev G et al. (TOTEM Collab.) Eur. Phys. J. C 79:103 2019.
  64. 64. 
    Cafagna F. (TOTEM Collab.) Proc. Sci. ICRC2019:207 2020.
  65. 65. 
    Abreu P et al. (Pierre Auger Collab.) Phys. Rev. Lett. 109:062002 2012.
  66. 66. 
    Cudell JR et al. (COMPETE Collab.) Phys. Rev. Lett. 89:201801 2002.
  67. 67. 
    d'Enterria D, Pierog T. J. High Energy Phys. 1608:170 2016.
  68. 68. 
    Abelev B et al. (ALICE Collab.) Phys. Rev. Lett. 109:252302 2012.
  69. 69. 
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 759:641 2016.
  70. 70. 
    Abelev BB et al. (ALICE Collab.) J. Instrum. 9:P11003 2014.
  71. 71. 
    Sjöstrand T et al. Comput. Phys. Commun. 191:159 2015.
  72. 72. 
    Bahr M et al. Eur. Phys. J. C 58:639 2008.
  73. 73. 
    Field R. Acta Phys. Polon. B 42:2631 2011.
  74. 74. 
    d'Enterria D, Snigirev A Double, triple, and n-parton scatterings in high-energy proton and nuclear collisions. Advanced Series on Directions in High Energy Physics, Vol. 29: Multiple Parton Interactions at the LHC P Bartalini, JR Gaunt 159–87 Singapore: World Sci 2018.
    [Google Scholar]
  75. 75. 
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1009:91 2010.
  76. 76. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 116:172301 2016.
  77. 77. 
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 765:193 2017.
  78. 78. 
    d'Enterria D et al. Eur. Phys. J. C 66:173 2010.
  79. 79. 
    Hofstadter R. Rev. Mod. Phys. 28:214 1956.
  80. 80. 
    Corke R, Sjöstrand T. J. High Energy Phys. 1105:9 2011.
  81. 81. 
    Skands P, Carrazza S, Rojo J. Eur. Phys. J. C 74:3024 2014.
  82. 82. 
    Acharya S et al. (ALICE Collab.) Eur. Phys. J. C 79:857 2019.
  83. 83. 
    Sjöstrand T The development of MPI modeling in Pythia. Advanced Series on Directions in High Energy Physics, Vol. 29: Multiple Parton Interactions at the LHC P Bartalini, JR Gaunt 191–225 Singapore: World Sci 2018.
    [Google Scholar]
  84. 84. 
    Loizides C, Morsch A. Phys. Lett. B 773:408 2017.
  85. 85. 
    Alvioli M, Holopainen H, Eskola KJ, Strikman M. Phys. Rev. C 85:034902 2012.
  86. 86. 
    Rybczyński M, Wlodarczyk Z. J. Phys. G 41:015106 2013.
  87. 87. 
    Grosse-Oetringhaus JF, Reygers K. J. Phys. G 37:083001 2010.
  88. 88. 
    Welsh K, Singer J, Heinz UW. Phys. Rev. C 94:024919 2016.
  89. 89. 
    Moreland JS, Bernhard JE, Bass SA. Phys. Rev. C 101:024911 2020.
  90. 90. 
    Teaney D, Yan L Phys. Rev. C 83:064904 2011.
  91. 91. 
    Alver B et al. (PHOBOS Collab.) Phys. Rev. Lett. 98:242302 2007.
  92. 92. 
    Blaizot JP, Broniowski W, Ollitrault JY. Phys. Rev. C 90:034906 2014.
  93. 93. 
    Heiselberg H et al. Phys. Rev. Lett. 67:2946 1991.
  94. 94. 
    Alvioli M, Strikman M. Phys. Lett. B 722:347 2013.
  95. 95. 
    Alvioli M, Frankfurt L, Perepelitsa D, Strikman M. Phys. Rev. D 98:071502 2018.
  96. 96. 
    Gribov V. Sov. Phys. JETP 29:483 1969.
  97. 97. 
    Bierlich C, Gustafson G, Lönnblad L. J. High Energy Phys. 1610:139 2016.
  98. 98. 
    Adare A et al. (PHENIX Collab.) Phys. Rev. Lett. 116:122301 2016.
  99. 99. 
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 76:199 2016.
  100. 100. 
    McGlinchey D, Nagle J, Perepelitsa D. Phys. Rev. C 94:024915 2016.
  101. 101. 
    Ciofi degli Atti C et al. Phys. Rev. C 84:025205 2011.
  102. 102. 
    Flensburg C, Gustafson G, Lönnblad L. J. High Energy Phys. 1108:103 2011.
  103. 103. 
    Salam G. J. High Energy Phys. 9807:019 1998.
  104. 104. 
    Barrett RC, Jackson DF. Nuclear Sizes and Structure Oxford, UK: Oxford Univ. Press 1977.
  105. 105. 
    Klos B et al. Phys. Rev. C 76:014311 2007.
  106. 106. 
    Tarbert CM et al. Phys. Rev. Lett. 112:242502 2014.
  107. 107. 
    Fricke G et al. At. Data Nucl. Data Tables 60:177 1995.
  108. 108. 
    Horowitz CJ, Pollock SJ, Souder PA, Michaels R. Phys. Rev. C 63:025501 2001.
  109. 109. 
    Paukkunen H. Phys. Lett. B 745:73 2015.
  110. 110. 
    De S. J. Phys. G 44:045104 2017.
  111. 111. 
    Helenius I, Paukkunen H, Eskola KJ. Eur. Phys. J. C 77:148 2017.
  112. 112. 
    Alvioli M, Strikman M. Phys. Rev. C 100:024912 2019.
  113. 113. 
    Durham JM. (PHENIX Collab.) Proc. Sci. HardProbes2018165 2018.
    [Google Scholar]
  114. 114. 
    Adamczyk L et al. (STAR Collab.) Phys. Rev. Lett. 115:222301 2015.
  115. 115. 
    Hulthén L, Sugawara M The two-nucleon problem. Encyclopedia of Physics, Vol. 39: Structure of Atomic Nuclei S Flügge 1–143 Berlin/Heidelberg: Springer 1957.
    [Google Scholar]
  116. 116. 
    Adler SS et al. (PHENIX Collab.) Phys. Rev. Lett. 91:072303 2003.
  117. 117. 
    Adler SS et al. (PHENIX Collab.) Phys. Rev. C 74:024904 2006.
  118. 118. 
    Nagle JL et al. Phys. Rev. Lett. 113:112301 2014.
  119. 119. 
    Lim S et al. Phys. Rev. C 99:044904 2019.
  120. 120. 
    Shou QY et al. Phys. Lett. B 749:215 2015.
  121. 121. 
    Noronha-Hostler J et al. arXiv:1905.13323 [hep-ph] 2019.
  122. 122. 
    Giacalone G. Phys. Rev. Lett. 124:202301 2020.
  123. 123. 
    Huang S, Chen Z, Jia J, Li W. Phys. Rev. C 101:021901 2020.
  124. 124. 
    Sievert MD, Noronha-Hostler J. Phys. Rev. C 100:024904 2019.
  125. 125. 
    Vogt R. Acta Phys. Hung. A 9:339 1999.
  126. 126. 
    d'Enterria D arXiv:nucl-ex/0302016 2003.
  127. 127. 
    Adler S et al. (PHENIX Collab.) Phys. Rev. Lett. 94:232301 2005.
  128. 128. 
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 710:256 2012.
  129. 129. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. C 93:034914 2016.
  130. 130. 
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2007:116 2020.
  131. 131. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 110:022301 2013.
  132. 132. 
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 75:23 2015.
  133. 133. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. C 92:044915 2015.
  134. 134. 
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 759:36 2016.
  135. 135. 
    Acharya S et al. (ALICE Collab.) Phys. Lett. B 780:372 2018.
  136. 136. 
    Aad G et al. (ALICE Collab.) Phys. Lett. B 802:135262 2020.
  137. 137. 
    Aad G et al. (ALICE Collab.) Eur. Phys. J. C 79:935 2019.
  138. 138. 
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 800:135048 2020.
  139. 139. 
    Eskola KJ, Paakkinen P, Paukkunen H, Salgado CA. Eur. Phys. J. C 77:163 2017.
  140. 140. 
    Kusina A et al. Eur. Phys. J. C 77:488 2017.
  141. 141. 
    Abdul Khalek R, Ethier JJ, Rojo J, van Weelden G J. High Energy Phys. 2009:183 2020.
  142. 142. 
    Khanpour H, Atashbar Tehrani S Phys. Rev. D 93:014026 2016.
  143. 143. 
    Eskola KJ, Helenius I, Kuha M, Paukkunen H. Phys. Rev. Lett. 125:212301 2020.
  144. 144. 
    Deng WT, Wang XN, Xu R. Phys. Rev. C 83:014915 2011.
  145. 145. 
    Pierog T et al. Phys. Rev. C 92:034906 2015.
  146. 146. 
    Lin ZW et al. Phys. Rev. C 72:064901 2005.
  147. 147. 
    Ostapchenko S. Phys. Rev. D 83:014018 2011.
  148. 148. 
    Roesler S, Engel R, Ranft J The Monte Carlo event generator DPMJET-III. Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications: Proceedings of the Monte Carlo 2000 Conference, Lisbon, 23–26 October 2000 A Kling et al.1033–38 Berlin: Springer 2001.
    [Google Scholar]
  149. 149. 
    Sjöstrand T, Mrenna S, Skands PZ. Comput. Phys. Commun. 178:852 2008.
  150. 150. 
    Bierlich C, Gustafson G, Lönnblad L, Shah H. J. High Energy Phys. 1810:134 2018.
  151. 151. 
    d'Enterria D et al. Astropart. Phys. 35:98 2011.
  152. 152. 
    Andersson B. The Lund Model 7 Cambridge, UK: Cambridge Univ. Press 2005.
  153. 153. 
    Andersson B, Gustafson G, Nilsson-Almqvist B. Nucl. Phys. B 281:289 1987.
  154. 154. 
    Klein SR et al. Comput. Phys. Commun. 212:258 2017.
  155. 155. 
    Harland-Lang L, Khoze V, Ryskin M Eur. Phys. J. C 79:39 2019.
  156. 156. 
    Heinz U Early collective expansion: relativistic hydrodynamics and the transport properties of QCD matter. Landolt-Börnstein—Group I Elementary Particles, Nuclei and Atoms, Vol. 23: Relativistic Heavy Ion Physics R Stock Berlin: Springer https://doi.org/10.1007/978-3-642-01539-7_9 2010.
    [Crossref] [Google Scholar]
  157. 157. 
    Hirano T, Huovinen P, Murase K, Nara Y Prog. Part. Nucl. Phys. 70:108 2013.
  158. 158. 
    Gale C, Jeon S, Schenke B. Int. J. Mod. Phys. A 28:1340011 2013.
  159. 159. 
    Petersen H et al. Phys. Rev. C 78:044901 2008.
  160. 160. 
    Strickland M. Pramana 84:671 2015.
  161. 161. 
    Kharzeev D, Levin E, Nardi M Phys. Rev. C 71:054903 2005.
  162. 162. 
    Drescher HJ, Nara Y. Phys. Rev. C 75:034905 2007.
  163. 163. 
    Schenke B, Tribedy P, Venugopalan R. Phys. Rev. C 86:034908 2012.
  164. 164. 
    Schenke B, Tribedy P, Venugopalan R. Phys. Rev. Lett. 108:252301 2012.
  165. 165. 
    Gelis F, Iancu E, Jalilian-Marian J, Venugopalan R. Annu. Rev. Nucl. Part. Sci. 60:463 2010.
  166. 166. 
    Eskola K, Kajantie K, Ruuskanen P, Tuominen K. Nucl. Phys. B 570:379 2000.
  167. 167. 
    Niemi H, Eskola K, Paatelainen R. Phys. Rev. C 93:024907 2016.
  168. 168. 
    Moreland JS, Bernhard JE, Bass SA. Phys. Rev. C 92:011901 2015.
  169. 169. 
    Kowalski H, Teaney D. Phys. Rev. D 68:114005 2003.
  170. 170. 
    Acharya S et al. (ALICE Collab.) Phys. Lett. B 784:82 2018.
  171. 171. 
    Nagle J, Zajc W. Phys. Rev. C 99:054908 2019.
  172. 172. 
    Abelev B et al. (ALICE Collab.) Phys. Rev. C 88:044909 2013.
  173. 173. 
    Acharya S. (ALICE Collab.) Centrality determination in heavy ion collisions. Rep. ALICE-PUBLIC-2018-011 CERN Geneva: https://cds.cern.ch/record/2636623 2018.
  174. 174. 
    Chatrchyan S et al. (CMS Collab.) J. High Energy Phys. 1108:141 2011.
  175. 175. 
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 710:363 2012.
  176. 176. 
    Wood JS. 2012. The development of the CMS zero degree calorimeters to derive the centrality of AA collisions PhD Diss., Univ. Kansas Lawrence:
    [Google Scholar]
  177. 177. 
    Adare A et al. (PHENIX Collab.) Phys. Rev. C 90:034902 2014.
  178. 178. 
    Adam J et al. (ALICE Collab.) Phys. Rev. C 91:064905 2015.
  179. 179. 
    Perepelitsa DV, Steinberg PA. arXiv:1412.0976 [nucl-ex] 2014.
  180. 180. 
    Acharya S et al. (ALICE Collab.) Phys. Lett. B 793:420 2019.
  181. 181. 
    Sirunyan AM et al. (CMS Collab.) arXiv:2103.14089 [hep-ex] ( 2021.
/content/journals/10.1146/annurev-nucl-102419-060007
Loading
/content/journals/10.1146/annurev-nucl-102419-060007
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error