1932

Abstract

Applying dimensional analysis to the Higgs mass leads one to predict new physics interactions that generate this mass at a scale of the order of 1 TeV. The question of what these interactions could be is known as the gauge hierarchy problem. Resolving this question has been a central aim of particle physics for the past few decades. Traditional solutions introduce new particles with masses below 1 TeV, but that prediction is now challenged by experiment. In this article, I review recent new approaches to the problem that do not require new particles at the TeV mass scale. I first discuss the relaxation approach, whereby the Higgs mass is made dynamical and is small at the absolute minimum of its potential. I then discuss the historical approach, whereby details about inflation and/or reheating after inflation cause the Higgs mass to be smaller than otherwise expected. Finally, I discuss solutions that use conditional probability, whereby conditioning on the fact that the cosmological constant is small automatically leads one to select vacua where the Higgs mass is also small.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102422-080830
2023-09-25
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-102422-080830.html?itemId=/content/journals/10.1146/annurev-nucl-102422-080830&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Weinberg S. Rev. Mod. Phys. 61:1 1989.)
  2. 2.
    Martin SP. Advanced Series on Directions in High Energy Physics, Vol. 18: Perspectives on Supersymmetry GL Kane 198. Singapore: World Scientific 1998.)
    [Google Scholar]
  3. 3.
    Dine M. Flavor Physics for the Millennium: Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2000) JL Rosner 34969. Singapore: World Scientific 2001.)
  4. 4.
    Murayama H. Proceedings of the ICTP Summer School in Particle Physics, Vol. 2296335. Trieste, Italy: Int. Cent. Theor. Phys 2000.)
  5. 5.
    Luty MA Physics in D4: Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2004) J Terning, CEM Wagner, D Zeppenfeld 495582. Singapore: World Scientific 2006.)
  6. 6.
    Polchinski J. The Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference in Physics D Gross, M Henneaux, A Sevrin 21536. Singapore: World Scientific 2007.)
  7. 7.
    Bousso R. Gen. Rel. Grav. 40:607 2008.)
  8. 8.
    Giudice GF Perspectives on LHC Physics G Kane, A Pierce 15578. Singapore: World Scientific 2008.)
  9. 9.
    Giudice GF. Proc. Sci. EPS-HEP2013163 2013.)
  10. 10.
    Burgess CP Post-Planck Cosmology: Lecture Notes of the Les Houches Summer School, Vol. 100 C Deffayet, et al. 14997. Oxford, UK: Oxford Univ. Press 2015.)
  11. 11.
    Wells JD. Stud. Hist. Philos. Sci. B 49:102 2015.)
  12. 12.
    Wells JD Synthese 194:477 2017.)
  13. 13.
    Hook A. Proc. Sci. TASI2018:004 2019.)
  14. 14.
    Cohen T. Proc. Sci. TASI2018:011 2019.)
  15. 15.
    Burgess CP. Introduction to Effective Field Theory Cambridge, UK: Cambridge Univ. Press 2020.)
  16. 16.
    Craig N. arXiv:2205.05708 [hep-ph] 2022.)
  17. 17.
    Draper P, Garcia IG, Reece M. arXiv:2203.07624 [hep-ph] 2022.)
  18. 18.
    Berglund P et al. arXiv:2202.06890 [hep-th] 2022.)
  19. 19.
    Agrawal P et al. arXiv:2203.08026 [hep-ph] 2022.)
  20. 20.
    Blinov N et al. arXiv:2203.07218 [hep-ph] 2022.)
  21. 21.
    Batell B, Low M, Neil ET, Verhaaren CB. arXiv:2203.05531 [hep-ph] 2022.)
  22. 22.
    Weisskopf V. Z. Phys. 89:27 1934.). Erratum Z. Phys. 90:817 1934.)
  23. 23.
    Weisskopf VF. Phys. Rev. 56:72 1939.)
  24. 24.
    Wilson KG. Phys. Rev. D 3:1818 1971.)
  25. 25.
    Weinberg S. Phys. Rev. D 13:974 1976.). Addendum Phys. Rev. D 19:1277 1979.)
  26. 26.
    Susskind L. Phys. Rev. D 20:2619 1979.)
  27. 27.
    ’t Hooft G NATO Sci. Ser. B 59:135 1980.)
  28. 28.
    Veltman MJG. Acta Phys. Polon. B 12:437 1981.)
  29. 29.
    Aad G et al.(ATLAS Collab.) Eur. Phys. J. C 80:737 2020.)
  30. 30.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1806:107 2018.)
  31. 31.
    Sirunyan AM et al.(CMS Collab.) Eur. Phys. J. C 81:3 2021.)
  32. 32.
    Sirunyan AM et al.(CMS Collab.) Eur. Phys. J. C 80:3 2020.)
  33. 33.
    Aad G et al.(ATLAS Collab.) Eur. Phys. J. C 80:123 2020.)
  34. 34.
    Aad G et al.(ATLAS Collab.) Phys. Rev. D 104:112010 2021.)
  35. 35.
    CMS Collab Report CMS-SUS-21-002/CERN-EP-2022-031. CERN Geneva: 2022.)
  36. 36.
    CMS Collab Nature 607:60 2022.)
  37. 37.
    ATLAS Collab Nature 607:52 2022.)
  38. 38.
    Dawson S, Meade P, Ojalvo I, Vernieri C. arXiv:2209.07510 [hep-ph] 2022.)
  39. 39.
    Arkani-Hamed N, Dimopoulos S, Dvali GR. Phys. Lett. B 429:263 1998.)
  40. 40.
    Antoniadis I, Arkani-Hamed N, Dimopoulos S, Dvali GR. Phys. Lett. B 436:257 1998.)
  41. 41.
    Randall L, Sundrum R. Phys. Rev. Lett. 83:3370 1999.)
  42. 42.
    Randall L, Sundrum R. Phys. Rev. Lett. 83:4690 1999.)
  43. 43.
    Agrawal P et al. arXiv:2203.07533 [hep-th] 2022.)
  44. 44.
    Weinberg S. Phys. Rev. Lett. 59:2607 1987.)
  45. 45.
    Agrawal V, Barr SM, Donoghue JF, Seckel D. Phys. Rev. D 57:5480 1998.)
  46. 46.
    Hall LJ, Pinner D, Ruderman JT. J. High Energy Phys. 1412:134 2014.)
  47. 47.
    Harnik R, Kribs GD, Perez G. Phys. Rev. D 74:035006 2006.)
  48. 48.
    Arkani-Hamed N, Cohen AG, Georgi H. Phys. Lett. B 513:232 2001.)
  49. 49.
    Arkani-Hamed N, Cohen AG, Katz E, Nelson AE. J. High Energy Phys. 0207:034 2002.)
  50. 50.
    Schmaltz M, Tucker-Smith D. Annu. Rev. Nucl. Part. Sci. 55:229 2005.)
  51. 51.
    Chacko Z, Goh H-S, Harnik R. Phys. Rev. Lett. 96:231802 2006.)
  52. 52.
    Craig N, Knapen S, Longhi P. Phys. Rev. Lett. 114:061803 2015.)
  53. 53.
    Contino R et al. Phys. Rev. D 96:095036 2017.)
  54. 54.
    Burdman G, Chacko Z, Goh H-S, Harnik R. J. High Energy Phys. 0702:009 2007.)
  55. 55.
    Cohen T, Craig N, Lou HK, Pinner D. J. High Energy Phys. 1603:196 2016.)
  56. 56.
    Craig N, Katz A, Strassler M, Sundrum R. J. High Energy Phys. 1507:105 2015.)
  57. 57.
    Chacko Z, Curtin D, Verhaaren CB. Phys. Rev. D 94:011504 2016.)
  58. 58.
    Kaplan DB, Georgi H. Phys. Lett. B 136:183 1984.)
  59. 59.
    Giudice GF, Grojean C, Pomarol A, Rattazzi R. J. High Energy Phys. 0706:045 2007.)
  60. 60.
    Panico G, Wulzer A. The Composite Nambu-Goldstone Higgs Cham, Switz: Springer 2016.)
  61. 61.
    Contino R. Physics of the Large and the Small: Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2009) C Csaki, S Dodelson 235306. Singapore: World Scientific 2011.)
  62. 62.
    Hook A. Phys. Rev. Lett. 120:261802 2018.)
  63. 63.
    Kolb EW, Turner MS. The Early Universe Boca Raton, FL: CRC 1990.)
  64. 64.
    Arkani-Hamed N et al. Phys. Rev. Lett. 117:251801 2016.)
  65. 65.
    Graham PW, Kaplan DE, Rajendran S. Phys. Rev. Lett. 115:221801 2015.)
  66. 66.
    Arvanitaki A et al. J. High Energy Phys. 1705:71 2017.)
  67. 67.
    Arkani-Hamed N, D'Agnolo RT, Kim HD Phys. Rev. D 104:095014 2021.)
  68. 68.
    Dienes KR. Nucl. Phys. B 611:146 2001.)
  69. 69.
    Abel S, Dienes KR. Phys. Rev. D 104:126032 2021.)
  70. 70.
    Craig N, Koren S J. High Energy Phys. 2003.37 2020.)
  71. 71.
    Arkani-Hamed N, Harigaya K J. High Energy Phys. 2109:25 2021.)
  72. 72.
    Arkani-Hamed N, Motl L, Nicolis A, Vafa C. J. High Energy Phys. 0706:060 2007.)
  73. 73.
    Cheung C, Remmen GN. Phys. Rev. Lett. 113:051601 2014.)
  74. 74.
    Craig N, Garcia Garcia I, Koren S J. High Energy Phys. 1909:81 2019.)
  75. 75.
    Geller M, Hochberg Y, Kuflik E. Phys. Rev. Lett. 122:191802 2019.)
  76. 76.
    Kartvelishvili G, Khoury J, Sharma A. J. Cosmol. Astropart. Phys. 2102:028 2021.)
  77. 77.
    Csáki C, D'Agnolo RT, Geller M, Ismail A Phys. Rev. Lett. 126:091801 2021.)
  78. 78.
    Giudice GF, McCullough M, You T J. High Energy Phys. 2110:93 2021.)
  79. 79.
    Touboul P et al.(MICROSCOPE Collab.) Phys. Rev. Lett. 129:121102 2022.)
  80. 80.
    Hardy E, Lasenby R J. High Energy Phys. 1702:33 2017.)
  81. 81.
    Alekhin S et al. Rep. Prog. Phys. 79:124201 2016.)
  82. 82.
    Flacke T et al. J. High Energy Phys. 1706:50 2017.)
  83. 83.
    Batell B, Giudice GF, McCullough M J. High Energy Phys. 1512:162 2015.)
  84. 84.
    Espinosa JR et al. Phys. Rev. Lett. 115:251803 2015.)
  85. 85.
    Choi K, Im SH. J. High Energy Phys. 1601:149 2016.)
  86. 86.
    Matsedonskyi O. J. High Energy Phys. 1601:63 2016.)
  87. 87.
    Hook A, Marques-Tavares G. J. High Energy Phys. 1612:101 2016.)
  88. 88.
    Evans JL, Gherghetta T, Nagata N, Thomas Z. J. High Energy Phys. 1609:150 2016.)
  89. 89.
    Choi K, Kim H, Sekiguchi T. Phys. Rev. D 95:075008 2017.)
  90. 90.
    Batell B, Fedderke MA, Wang L-T J. High Energy Phys. 1712:139 2017.)
  91. 91.
    Wang S-J. Phys. Rev. D 99:023529 2019.)
  92. 92.
    Fonseca N, Morgante E, Servant G. J. High Energy Phys. 1810:20 2018.)
  93. 93.
    Arvanitaki A et al. Phys. Rev. D 97:075020 2018.)
  94. 94.
    Jackson Kimball DF et al. Phys. Rev. D 97:043002 2018.)
  95. 95.
    Banerjee A et al. Commun. Phys. 3:1 2020.)
  96. 96.
    Yeh T-H, Shelton J, Olive KA, Fields BD. J. Cosmol. Astropart. Phys. 2210:046 2022.)
  97. 97.
    Dvorkin C et al. arXiv:2203.07943 [hep-ph] 2022.)
  98. 98.
    Archer-Smith P, Linthorne D, Stolarski D. Phys. Rev. D 101:095016 2020.)
  99. 99.
    Tito D'Agnolo R, Teresi D J. High Energy Phys. 2202:23 2022.)
  100. 100.
    Tito D'Agnolo R, Teresi D. Phys. Rev. Lett. 128:021803 2022.)
  101. 101.
    Csaki C, Ismail A, Ruhdorfer M, Tooby-Smith J. arXiv:2210.02456 [hep-ph] 2022.)
/content/journals/10.1146/annurev-nucl-102422-080830
Loading
/content/journals/10.1146/annurev-nucl-102422-080830
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error