1932

Abstract

Penning-trap mass spectrometry in atomic and nuclear physics has become a well-established and reliable tool for the determination of atomic masses. In combination with short-lived radioactive nuclides it was first introduced at ISOLTRAP at the Isotope Mass Separator On-Line facility (ISOLDE) at CERN. Penning traps have found new applications in coupling to other production mechanisms, such as in-flight production and separation systems. The applications in atomic and nuclear physics range from nuclear structure studies and related precision tests of theoretical approaches to description of the strong interaction to tests of the electroweak Standard Model, quantum electrodynamics and neutrino physics, and applications in nuclear astrophysics. The success of Penning-trap mass spectrometry is due to its precision and accuracy, even for low ion intensities (i.e., low production yields), as well as its very fast measurement cycle, enabling access to short-lived isotopes. The current reach in relative mass precision goes beyond δ/=10−8, the half-life limit is as low as a few milliseconds, and the sensitivity is on the order of one ion per minute in the trap. We provide a comprehensive overview of the techniques and applications of Penning-trap mass spectrometry in nuclear and atomic physics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102711-094939
2018-10-19
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/nucl/68/1/annurev-nucl-102711-094939.html?itemId=/content/journals/10.1146/annurev-nucl-102711-094939&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Thomson JJ Proc. R. Soc. A 89:1 1913.
    [Google Scholar]
  2. 2.  Audi G Int. J. Mass Spectrom. 251:85 2006.
    [Google Scholar]
  3. 3.  Myers EG et al. Phys. Rev. Lett. 114:013003 2015.
    [Google Scholar]
  4. 4.  Eliseev S et al. Phys. Rev. Lett. 115:062501 2015.
    [Google Scholar]
  5. 5.  Rainville S et al. Science 303:334 2004.
    [Google Scholar]
  6. 6.  Brown LS, Gabrielse G Rev. Mod. Phys. 58:233 1986.
    [Google Scholar]
  7. 7.  Brown LS, Gabrielse G Phys. Rev. B 25:2423R 1982.
    [Google Scholar]
  8. 8.  Gabrielse G Int. J. Mass Spectrom. 279:107 2009.
    [Google Scholar]
  9. 9.  Block M et al. Eur. Phys. J. D 45:39 2007.
    [Google Scholar]
  10. 10.  Block M et al. Nucl. Phys. A 944:471 2015.
    [Google Scholar]
  11. 11.  Ketelaer J et al. Nucl. Instrum. Methods A 594:162 2008.
    [Google Scholar]
  12. 12.  Szerypo J et al. Nucl. Phys. A 701:588 2002.
    [Google Scholar]
  13. 13.  Mukherjee M et al. Eur. Phys. J. A 35:1 2008.
    [Google Scholar]
  14. 14.  Ringle R, Schwarz S, Bollen G Int. J. Mass Spectrom. 349:87 2013.
    [Google Scholar]
  15. 15.  Dilling J et al. Int. J. Mass Spectrom. 251:198 2006.
    [Google Scholar]
  16. 16.  Clark J et al. Nucl. Instrum. Methods B 204:487 2003.
    [Google Scholar]
  17. 17.  Mount B, Redshaw M, Myers E Hyperfine Interact 199:327 2011.
    [Google Scholar]
  18. 18.  Diehl C et al. Hyperfine Interact 199:291 2011.
    [Google Scholar]
  19. 19.  Repp J et al. Appl. Phys. B 107:983 2012.
    [Google Scholar]
  20. 20.  Roux C et al. Appl. Phys. B 107:997 2012.
    [Google Scholar]
  21. 21.  Redshaw M et al. Nucl. Instrum. Methods B 376:302 2016.
    [Google Scholar]
  22. 22.  Gräff G, Kalinowsky H, Traut J Z. Phys. A 297:35 1980.
    [Google Scholar]
  23. 23.  Eliseev S et al. Phys. Rev. Lett. 110:082501 2013.
    [Google Scholar]
  24. 24.  Comisarow MB, Marshall AG Chem. Phys. Lett. 25:282 1974.
    [Google Scholar]
  25. 25.  König M et al. Int. J. Mass Spectrom. 142:95 1995.
    [Google Scholar]
  26. 26.  Bollen G et al. Nucl. Instrum. Methods B 70:490 1992.
    [Google Scholar]
  27. 27.  Kretzschmar M Int. J. Mass Spectrom. 264:122 2007.
    [Google Scholar]
  28. 28.  George S et al. Int. J. Mass Spectrom. 264:110 2007.
    [Google Scholar]
  29. 29.  George S et al. Phys. Rev. Lett. 98:162501 2007.
    [Google Scholar]
  30. 30.  Ringle R et al. Int. J. Mass Spectrom. 262:33 2007.
    [Google Scholar]
  31. 31.  Eliseev S et al. Int. J. Mass Spectrom. 262:45 2007.
    [Google Scholar]
  32. 32.  Eliseev S et al. Phys. Rev. Lett. 107:152501 2011.
    [Google Scholar]
  33. 33.  Eliseev S et al. Appl. Phys. B 114:107 2014.
    [Google Scholar]
  34. 34.  Wineland DJ, Dehmelt HG J. Appl. Phys. 46:919 1975.
    [Google Scholar]
  35. 35.  Cornell EA et al. Phys. Rev. A 41:312 1990.
    [Google Scholar]
  36. 36.  Verdu J et al. Phys. Scr. T112:68 2004.
    [Google Scholar]
  37. 37.  Cornell EA et al. Phys. Rev. Lett. 63:1674 1989.
    [Google Scholar]
  38. 38.  Sturm S, Wagner A, Schabinger B, Blaum K Phys. Rev. Lett. 107:143003 2011.
    [Google Scholar]
  39. 39.  Gärtner G, Klempt E Z. Phys. A 287:1 1976.
    [Google Scholar]
  40. 40.  Dehmelt H Adv. At. Mol. Phys. 3:53 1967.
    [Google Scholar]
  41. 41.  Farnham DL, Van Dyck RS, Schwinberg PB Phys. Rev. Lett. 75:3598 1995.
    [Google Scholar]
  42. 42.  Gabrielse G et al. Phys. Rev. Lett. 66:1317 1990.
    [Google Scholar]
  43. 43.  Bollen G et al. Hyperfine Interact 38:793 1987.
    [Google Scholar]
  44. 44.  Blumenfeld Y et al. Phys. Scr. T152:014023 2013.
    [Google Scholar]
  45. 45.  Savard G et al. Nucl. Instrum. Methods B 266:4086 2008.
    [Google Scholar]
  46. 46.  Geissel H et al. Nucl. Instrum. Methods B 70:286 1992.
    [Google Scholar]
  47. 47.  Kubo T Nucl. Instrum. Methods B 204:97 2003.
    [Google Scholar]
  48. 48.  Morrissey D et al. Nucl. Instrum. Methods B 204:90 2003.
    [Google Scholar]
  49. 49.  Winkler M et al. Nucl. Instrum. Methods B 266:4183 2008.
    [Google Scholar]
  50. 50.  Hausmann M et al. Nucl. Instrum. Methods B 317:349 2013.
    [Google Scholar]
  51. 51.  Hofmann S, Münzenberg G Rev. Mod. Phys. 72:733 2000.
    [Google Scholar]
  52. 52.  Harss B et al. Rev. Sci. Instrum. 71:280 2000.
    [Google Scholar]
  53. 53.  Wiedenhöver I et al. Proceedings of the 5th International Conference on Fission and Properties of Neutron-Rich Nuclei (ICNF5) JH Hamilton, AV Ramayya 144 Singapore: World Sci 2014.
    [Google Scholar]
  54. 54.  Becchetti F et al. Nucl. Instrum. Methods A 505:377 2003.
    [Google Scholar]
  55. 55.  Schnatz H et al. Nucl. Instrum. Methods A 251:17 1986.
    [Google Scholar]
  56. 56.  Stolzenberg H et al. Phys. Rev. Lett. 65:3104 1990.
    [Google Scholar]
  57. 57.  Moore RB, Rouleau G J. Mod. Opt. 39:361 1992.
    [Google Scholar]
  58. 58.  Herfurth F et al. Nucl. Instrum. Methods A 469:254 2001.
    [Google Scholar]
  59. 59.  Lunney D J. Phys. G 44:064008 2017.
    [Google Scholar]
  60. 60.  Kreim S et al. Nucl. Instrum. Methods B 317:492 2013.
    [Google Scholar]
  61. 61.  Wolf RN et al. Int. J. Mass. Spectrom. 349:123 2013.
    [Google Scholar]
  62. 62.  Raimbault-Hartmann H et al. Nucl. Instrum. Methods B 126:378 1997.
    [Google Scholar]
  63. 63.  Bollen G et al. Nucl. Instrum. Methods A 368:675 1996.
    [Google Scholar]
  64. 64.  Kellerbauer A et al. Phys. Rev. Lett. 93:072502 2004.
    [Google Scholar]
  65. 65.  Blaum K et al. Eur. Phys. J. A 15:245 2002.
    [Google Scholar]
  66. 66.  Elomaa V-V et al. Nucl. Instrum. Methods B 266:4425 2008.
    [Google Scholar]
  67. 67.  Smorra C et al. J. Phys. B 42:154028 2009.
    [Google Scholar]
  68. 68.  Chaudhuri A Eur. Phys. J. D 45:47 2009.
    [Google Scholar]
  69. 69.  Dilling J et al. Nucl. Instrum. Methods B 204:492 2003.
    [Google Scholar]
  70. 70.  Dombsky M et al. Nucl. Phys. A 701:486 2002.
    [Google Scholar]
  71. 71.  Baartman R Hyperfine Interact 225:69 2014.
    [Google Scholar]
  72. 72.  Brunner T et al. Nucl. Instrum. Methods A 676:32 2012.
    [Google Scholar]
  73. 73.  Brodeur M et al. Int. J. Mass Spectrom. 310:20 2012.
    [Google Scholar]
  74. 74.  Smith M et al. Phys. Rev. Lett. 101:202501 2008.
    [Google Scholar]
  75. 75.  Lascar D et al. Nucl. Instrum. Methods B 376:262 2016.
    [Google Scholar]
  76. 76.  Leistenschneider E et al. arXiv1710.08537 [nucl-ex] 2017.
  77. 77.  Lapierre A et al. Nucl. Instrum. Methods A 624:54 2010.
    [Google Scholar]
  78. 78.  Schultz BE et al. Phys. Scr. T156:014097 2013.
    [Google Scholar]
  79. 79.  Ettenauer S et al. Int. J. Mass Spectrom. 349:74 2013.
    [Google Scholar]
  80. 80.  Ettenauer S et al. Phys. Rev. Lett. 107:272501 2011.
    [Google Scholar]
  81. 81.  Klawitter R et al. Phys. Rev. C 93:045807 2016.
    [Google Scholar]
  82. 82.  Lascar D et al. Phys. Rev. C 96:044323 2017.
    [Google Scholar]
  83. 83.  Frekers D et al. Phys. Lett. B 722:233 2013.
    [Google Scholar]
  84. 84.  Sharma KS et al. AIP Conf. Proc. 455:130 1998.
    [Google Scholar]
  85. 85.  Block M et al. Eur. Phys. J. A 25:49 2005.
    [Google Scholar]
  86. 86.  Marx G et al. Hyperfine Interact 132:463 2001.
    [Google Scholar]
  87. 87.  Bollen G et al. Phys. Rev. Lett. 96:152501 2006.
    [Google Scholar]
  88. 88.  Schwarz S et al. Nucl. Instrum. Methods B 204:507 2003.
    [Google Scholar]
  89. 89.  Savard G et al. Nucl. Phys. A 626:353c 1997.
    [Google Scholar]
  90. 90.  Jokinen A et al. Nucl. Phys. A 746:277c 2004.
    [Google Scholar]
  91. 91.  Ketelaer J et al. Phys. Rev. C 84:014311 2011.
    [Google Scholar]
  92. 92.  Eibach M et al. Phys. Rev. C 89:064318 2014.
    [Google Scholar]
  93. 93.  Savard G, Levand AF, Zabransky BJ Nucl. Instrum. Methods B 376:246 2016.
    [Google Scholar]
  94. 94.  Hirsh TY et al. Nucl. Instrum. Methods B 376:229 2016.
    [Google Scholar]
  95. 95.  Van Schelt J et al. Phys. Rev. Lett. 111:061102 2013.
    [Google Scholar]
  96. 96.  Bergström I et al. Nucl. Instrum. Methods A 487:618 2002.
    [Google Scholar]
  97. 97.  Heiße F et al. Phys. Rev. Lett. 119:033001 2017.
    [Google Scholar]
  98. 98.  Gastaldo L et al. J. Low Temp. Phys. 176:876 2014.
    [Google Scholar]
  99. 99.  Crespo JR et al. Rev. Sci. Instrum. 75:1560 2004.
    [Google Scholar]
  100. 100.  Wang M et al. Chin. Phys. C 41:030003 2017.
    [Google Scholar]
  101. 101.  Huang WG et al. Chin. Phys. C 41:030002 2017.
    [Google Scholar]
  102. 102.  Lunney D, Pearson JM, Thibault C Rev. Mod. Phys. 75:1021 2003.
    [Google Scholar]
  103. 103.  Thibault C et al. Phys. Rev. C 12:644 1975.
    [Google Scholar]
  104. 104.  Honma M, Otsuka T, Brown BA, Mizusaki T Phys. Rev. C 69:034335 2004.
    [Google Scholar]
  105. 105.  Lapierre A et al. Phys. Rev. C 85:024317 2012.
    [Google Scholar]
  106. 106.  Gallant AT et al. Phys. Rev. Lett. 109:032506 2012.
    [Google Scholar]
  107. 107.  Weinholtz F et al. Nature 498:346 2013.
    [Google Scholar]
  108. 108.  Rosenbusch M et al. Phys. Rev. Lett. 114:202501 2015.
    [Google Scholar]
  109. 109.  Hager U et al. Phys. Rev. Lett. 96:043504 2006.
    [Google Scholar]
  110. 110.  Hager U et al. Phys. Rev. C 75:064302 2007.
    [Google Scholar]
  111. 111.  Hager U et al. Nucl. Phys. A 793:20 2007.
    [Google Scholar]
  112. 112.  Hakala J et al. Eur. Phys. J. A 47:129 2011.
    [Google Scholar]
  113. 113.  Brodeur M et al. Hyperfine Interact 199:167 2011.
    [Google Scholar]
  114. 114.  Riisager K Phys. Scr. T152:014001 2013.
    [Google Scholar]
  115. 115.  Blaum K, Dilling J, Nörtershäuser W Phys. Scr. T152:014017 2013.
    [Google Scholar]
  116. 116.  Brodeur M et al. Phys. Rev. Lett. 108:052504 2012.
    [Google Scholar]
  117. 117.  Ryjkov VL et al. Phys. Rev. Lett. 101:012501 2008.
    [Google Scholar]
  118. 118.  Ringle R et al. Phys. Lett. B 675:170 2009.
    [Google Scholar]
  119. 119.  Chaudhuri A et al. Appl. Phys. B 114:99 2014.
    [Google Scholar]
  120. 120.  Geithner W et al. Phys. Rev. Lett. 101:252502 2008.
    [Google Scholar]
  121. 121.  Block M et al. Nature 463:785 2010.
    [Google Scholar]
  122. 122.  Minaya Ramirez E et al. Science 337:1207 2012.
    [Google Scholar]
  123. 123.  Langanke K, Schatz H Phys. Scr. T152:014011 2013.
    [Google Scholar]
  124. 124.  Schatz H Int. J. Mass Spectrom. 251:293 2006.
    [Google Scholar]
  125. 125.  Mumpower MR, Surman R, McLaughlin GC, Aprahamian A Prog. Part. Nucl. Phys. 86:86 2016.
    [Google Scholar]
  126. 126.  Burbidge EM, Burbidge GR, Fowler WA, Hoyle F Rev. Mod. Phys. 29:547 1957.
    [Google Scholar]
  127. 127.  Arnould M, Goriely S, Takahashi K Phys. Rep. 450:97 2007.
    [Google Scholar]
  128. 128.  Arcones A, Thielemann F-K J. Phys. G 40:013201 2013.
    [Google Scholar]
  129. 129.  Thielemann F-K, Eichler M, Panov IV, Wehmeyer B Annu. Rev. Nucl. Part. Sci. 67:253 2017.
    [Google Scholar]
  130. 130.  Abbott BP et al. Phys. Rev. Lett. 119:161101 2017.
    [Google Scholar]
  131. 131.  Arcavi I et al. Nature 551:64 2017.
    [Google Scholar]
  132. 132.  Kasen D et al. Nature 551:80 2017.
    [Google Scholar]
  133. 133.  Brett S et al. Eur. Phys. J. A 48:184 2012.
    [Google Scholar]
  134. 134.  Simon VV et al. Phys. Rev. C 85:064308 2012.
    [Google Scholar]
  135. 135.  Manea V et al. Phys. Rev. C 88:054322 2013.
    [Google Scholar]
  136. 136.  de Roubin A et al. Phys. Rev. C 96:014310 2017.
    [Google Scholar]
  137. 137.  Atanasov D et al. Phys. Rev. Lett. 115:232501 2015.
    [Google Scholar]
  138. 138.  Van Schelt J et al. Phys. Rev. C 85:045805 2012.
    [Google Scholar]
  139. 139.  Kankainen A et al. J. Phys. G 39:093101 2012.
    [Google Scholar]
  140. 140.  Woosley SE, Taam RE Nature 263:101 1976.
    [Google Scholar]
  141. 141.  Wallace RK, Woosley SE Astrophys. J. Suppl. Ser. 45:389 1981.
    [Google Scholar]
  142. 142.  Schatz H et al. Phys. Rev. Lett. 86:471 2001.
    [Google Scholar]
  143. 143.  Clark JA et al. Phys. Rev. C 75:032801R 2007.
    [Google Scholar]
  144. 144.  Fallis J et al. Phys. Rev. C 78:022801R 2008.
    [Google Scholar]
  145. 145.  Schury P et al. Phys. Rev. C 75:055801 2007.
    [Google Scholar]
  146. 146.  Savory J et al. Phys. Rev. Lett. 102:132501 2009.
    [Google Scholar]
  147. 147.  Herfurth F et al. Eur. Phys. J. A 47:75 2011.
    [Google Scholar]
  148. 148.  Martin A et al. Eur. Phys. J. A 34:341 2007.
    [Google Scholar]
  149. 149.  Haettner E et al. Phys. Rev. Lett. 106:122501 2011.
    [Google Scholar]
  150. 150.  Kankainen A et al. Phys. Rev. C 82:034311 2010.
    [Google Scholar]
  151. 151.  Elomaa V-V et al. Phys. Rev. Lett. 102:252501 2009.
    [Google Scholar]
  152. 152.  Weber C et al. Phys. Rev. C 78:054310 2008.
    [Google Scholar]
  153. 153.  Kankainen A et al. Phys. Rev. C 93:041304R 2016.
    [Google Scholar]
  154. 154.  Nesterenko DA et al. J. Phys. G 44:065103 2017.
    [Google Scholar]
  155. 155.  Canete L et al. Eur. Phys. J. A 52:124 2016.
    [Google Scholar]
  156. 156.  Pauli W Open letter to the group of radioactive people at the Gauverein meeting in Tübingen http://microboone-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=953;filename=pauli%20letter1930.pdf (in German 1930.
    [Google Scholar]
  157. 157.  Cowan CL et al. Science 124:103 1956.
    [Google Scholar]
  158. 158.  Fukuda Y et al. Phys. Rev. Lett. 81:1562 1998.
    [Google Scholar]
  159. 159.  Abazajian KN et al. arXiv1204.5379 [hep-ph] 2012.
  160. 160.  Adhikari R et al. arXiv1602.04816v2 [hep-ph] 2017.
  161. 161.  Drexlin G et al. Adv. High Energy Phys.293986 2013.
    [Google Scholar]
  162. 162.  Avignone FT III et al. Rev. Mod. Phys. 80:481 2008.
    [Google Scholar]
  163. 163.  Bernabeu G, Rujula A, Jarlskog C Nucl. Phys. B 223:15 1983.
    [Google Scholar]
  164. 164.  Barabash AS arXiv1702.06340v1 [nucl-ex] 2017.
  165. 165.  Redshaw M et al. Phys. Rev. Lett. 98:053003 2007.
    [Google Scholar]
  166. 166.  Douysset G et al. Phys. Rev. Lett. 86:4259 2001.
    [Google Scholar]
  167. 167.  Redshaw M et al. Phys. Rev. Lett. 102:212502 2009.
    [Google Scholar]
  168. 168.  Rahaman S et al. Phys. Lett. B 662:111 2008.
    [Google Scholar]
  169. 169.  Lincoln DL et al. Phys. Rev. Lett. 110:012501 2013.
    [Google Scholar]
  170. 170.  Rahaman S et al. Phys. Lett. B 703:412 2011.
    [Google Scholar]
  171. 171.  Bustabad S et al. Phys. Rev. C 88:022501R 2013.
    [Google Scholar]
  172. 172.  Kolhinen VS et al. Phys. Rev. C 82:022501R 2010.
    [Google Scholar]
  173. 173.  Alanssari M et al. Phys. Rev. Lett. 116:072501 2016.
    [Google Scholar]
  174. 174.  Eliseev SA, Novikov YN, Blaum K J. Phys. G 39:124003 2012.
    [Google Scholar]
  175. 175.  Eibach M et al. Phys. Rev. C 94:015502 2016.
    [Google Scholar]
  176. 176.  Eliseev S et al. Phys. Rev. Lett. 106:052504 2011.
    [Google Scholar]
  177. 177.  Eliseev S et al. Phys. Rev. C 84:012501R 2011.
    [Google Scholar]
  178. 178.  Kraus C et al. Eur. Phys. J. C 40:447 2005.
    [Google Scholar]
  179. 179.  Weinheimer C Prog. Part. Nucl. Phys. 57:22 2006.
    [Google Scholar]
  180. 180.  Aseev N et al. Phys. Rev. D 84:112003 2011.
    [Google Scholar]
  181. 181. KATRIN Collab. Design rep. FZKA 7090 Karlsruhe Inst. Technol. Karlsruhe, Ger: https://publikationen.bibliothek.kit.edu/270060419 2004.
  182. 182.  Gastaldo L et al. Eur. Phys. J. Spec. Top. 226:1623 2017.
    [Google Scholar]
  183. 183.  Alpert B et al. Eur. Phys. J. C 75:112 2015.
    [Google Scholar]
  184. 184.  Streubel S et al. Appl. Phys. B 114:137 2014.
    [Google Scholar]
  185. 185.  Esfahani AA et al. J. Phys. G 44:054004 2017.
    [Google Scholar]
  186. 186.  Hardy JC, Towner IS Phys. Rev. C 91:025501 2015.
    [Google Scholar]
  187. 187.  Mohr PJ et al. Rev. Mod. Phys. 88:035009 2016.
    [Google Scholar]
  188. 188.  Van Dyck RS et al. AIP Conf. Proc. 457:101 1999.
    [Google Scholar]
  189. 189.  Solders A et al. Phys. Rev. A 78:012514 2008.
    [Google Scholar]
  190. 190.  Greene GL et al. Phys. Rev. Lett. 56:819 1986.
    [Google Scholar]
  191. 191.  Zafonte SL, Van Dyck RS Jr. Metrologia 52:280 2015.
    [Google Scholar]
  192. 192.  Sturm S et al. Nature 506:467 2014.
    [Google Scholar]
  193. 193.  Köhler F et al. J. Phys. B 48:144032 2015.
    [Google Scholar]
  194. 194.  Brodeur M et al. Phys. Rev. Lett. 108:212501 2012.
    [Google Scholar]
  195. 195.  Gallant AT et al. Phys. Rev. Lett. 113:082501 2014.
    [Google Scholar]
  196. 196.  Kwiatkowski AA et al. Phys. Rev. C 80:051302 2009.
    [Google Scholar]
  197. 197.  Yazidjian C et al. Phys. Rev. C 76:024308 2007.
    [Google Scholar]
  198. 198.  Brodeur M et al. Phys. Rev. C 96:034316 2017.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102711-094939
Loading
/content/journals/10.1146/annurev-nucl-102711-094939
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error