1932

Abstract

For millennia, mankind has been fascinated by the marvel of the starry night sky. Yet, a proper scientific understanding of how stars form, shine, and die is a relatively recent achievement, made possible by the interplay of different disciplines as well as by significant technological, theoretical, and observational progress. We now know that stars are sustained by nuclear fusion reactions and are the furnaces where all chemical elements continue to be forged out of primordial hydrogen and helium. Studying these reactions in terrestrial laboratories presents serious challenges and often requires developing ingenious instrumentation and detection techniques. Here, we reveal how some of the major breakthroughs in our quest to unveil the inner workings of stars have come from the most unexpected of places: deep underground. As we celebrate 30 years of activity at the first underground laboratory for nuclear astrophysics, LUNA, we review some of the key milestones and anticipate future opportunities for further advances both at LUNA and at other underground laboratories worldwide.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-110221-103625
2022-09-26
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-110221-103625.html?itemId=/content/journals/10.1146/annurev-nucl-110221-103625&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbott BP et al. Phys. Rev. Lett. 116:6061102 2016.)
    [Google Scholar]
  2. 2.
    Bartos I, Kowalski M. Multimessenger Astronomy Bristol, UK: IOP Publ 2017.)
    [Google Scholar]
  3. 3.
    Burbidge EM, Burbidge GR, Fowler WA, Hoyle F. Rev. Mod. Phys. 29:4547–650 1957.)
    [Google Scholar]
  4. 4.
    Cameron A. Publ. Astron. Soc. Pac. 69:408201–22 1957.)
    [Google Scholar]
  5. 5.
    Rolfs C, Rodney W. Cauldrons in the Cosmos: Nuclear Astrophysics Chicago: Univ. Chicago Press 1988.)
    [Google Scholar]
  6. 6.
    Descouvemont P, Baye D. Rep. Prog. Phys. 73:3036301 2010.)
    [Google Scholar]
  7. 7.
    Assenbaum HJ, Langanke K, Rolfs C. Z. Phys. A 327:4461–68 1987.)
    [Google Scholar]
  8. 8.
    Gyürky G et al. Phys. Rev. C 100:1015805 2019.)
    [Google Scholar]
  9. 9.
    Ciani GF et al. Eur. Phys. J. A 56:375 2020.)
    [Google Scholar]
  10. 10.
    Formicola A et al. Nucl. Instrum. Methods Phys. Res. A 507:3609–16 2003.)
    [Google Scholar]
  11. 11.
    Rajta I et al. Nucl. Instrum. Methods Phys. Res. A 880:125–30 2018.)
    [Google Scholar]
  12. 12.
    Marta M et al. Nucl. Instrum. Methods Phys. Res. A 569:3727–31 2006.)
    [Google Scholar]
  13. 13.
    Bemmerer D et al. Europhys. Lett. 122:552001 2018.)
    [Google Scholar]
  14. 14.
    Cuesta C et al. Opt. Mater. 36:2316–20 2013.)
    [Google Scholar]
  15. 15.
    Caciolli A et al. Eur. Phys. J. A 48:144 2012.)
    [Google Scholar]
  16. 16.
    Champagne AE, Iliadis C, Longland R. AIP Adv. 4:4041006 2014.)
    [Google Scholar]
  17. 17.
    Depalo R et al. INFN-LNL Rep. 262:97 2021.)
    [Google Scholar]
  18. 18.
    Iliadis C. Nuclear Physics of Stars. New York: Wiley 2007.)
    [Google Scholar]
  19. 19.
    Greife U et al. Nucl. Instrum. Methods Phys. Res. A 350:1327–37 1994.)
    [Google Scholar]
  20. 20.
    Cavanna F et al. Eur. Phys. J. A 50:179 2014.)
    [Google Scholar]
  21. 21.
    Aghanim N et al. Astron. Astrophys. 641:A6 2020.)
    [Google Scholar]
  22. 22.
    Ma L et al. Phys. Rev. C 55:2588–96 1997.)
    [Google Scholar]
  23. 23.
    Tišma I et al. Eur. Phys. J. A 55:8137 2019.)
    [Google Scholar]
  24. 24.
    Marcucci LE, Mangano G, Kievsky A, Viviani M. Phys. Rev. Lett. 116:10102501 2016.)
    [Google Scholar]
  25. 25.
    Mossa V et al. Eur. Phys. J. A 56:5144 2020.)
    [Google Scholar]
  26. 26.
    Mossa V et al. Nature 587:7833210–13 2020.)
    [Google Scholar]
  27. 27.
    Misiaszek M et al. Appl. Radiat. Isot. 81:146–50 2013.)
    [Google Scholar]
  28. 28.
    Bruno CG et al. Phys. Rev. Lett. 117:14142502 2016.)
    [Google Scholar]
  29. 29.
    Bruno C et al. Phys. Lett. B 790:237–42 2019.)
    [Google Scholar]
  30. 30.
    Bruno CG et al. Eur. Phys. J. A 51:94 2015.)
    [Google Scholar]
  31. 31.
    Lugaro M et al. Nat. Astron. 1:0027 2017.)
    [Google Scholar]
  32. 32.
    Heusser G. Annu. Rev. Nucl. Part. Sci. 45:54390 1995.)
    [Google Scholar]
  33. 33.
    Belli P et al. Nuovo Cimento A 101:6959–66 1989.)
    [Google Scholar]
  34. 34.
    Best A et al. Nucl. Instrum. Methods Phys. Res. A 812:1–6 2016.)
    [Google Scholar]
  35. 35.
    Bruno G, Fulgione W. Eur. Phys. J. C 79:9747 2019.)
    [Google Scholar]
  36. 36.
    Csedreki L et al. Nucl. Instrum. Methods Phys. Res. A 994:165081 2021.)
    [Google Scholar]
  37. 37.
    Ciani GF et al. Phys. Rev. Lett. 127:15152701 2021.)
    [Google Scholar]
  38. 38.
    Balibrea-Correa J et al. Nucl. Instrum. Methods Phys. Res. A 906:103–9 2018.)
    [Google Scholar]
  39. 39.
    Drotleff HW et al. Astrophys. J. 414:735 1993.)
    [Google Scholar]
  40. 40.
    Heil M et al. Phys. Rev. C 78:2025803 2008.)
    [Google Scholar]
  41. 41.
    Gyürky G et al. Eur. Phys. J. A 55:341 2019.)
    [Google Scholar]
  42. 42.
    Adelberger EG et al. Rev. Mod. Phys. 83:1195–245 2011.)
    [Google Scholar]
  43. 43.
    Bemmerer D et al. Phys. Rev. Lett. 97:12122502 2006.)
    [Google Scholar]
  44. 44.
    Gyürky G et al. Phys. Rev. C 75:3035805 2007.)
    [Google Scholar]
  45. 45.
    Confortola F et al. Phys. Rev. C 75:6065803 2007.)
    [Google Scholar]
  46. 46.
    Scott DA et al. Phys. Rev. Lett. 109:20202501 2012.)
    [Google Scholar]
  47. 47.
    Di Leva A et al. Phys. Rev. C 89:1015803 2014.)
    [Google Scholar]
  48. 48.
    Rauscher T et al. Rep. Prog. Phys. 76:6066201 2013.)
    [Google Scholar]
  49. 49.
    Kiss GG et al. Nucl. Phys. A 867:152–65 2011.)
    [Google Scholar]
  50. 50.
    Somorjai E et al. Astron. Astrophys. 333:1112–16 1998.)
    [Google Scholar]
  51. 51.
    Kutschera W. Adv. Phys. X 1:4570–95 2016.)
    [Google Scholar]
  52. 52.
    Limata B et al. Phys. Rev. C 82:1015801 2010.)
    [Google Scholar]
  53. 53.
    Strieder F et al. Phys. Lett. B 707:160–65 2012.)
    [Google Scholar]
  54. 54.
    Straniero O et al. Astrophys. J. 763:2100 2013.)
    [Google Scholar]
  55. 55.
    Casella C et al. Nucl. Phys. A 706:1203–16 2002.)
    [Google Scholar]
  56. 56.
    Prati P et al. Z. Phys. A 350:2171–76 1994.)
    [Google Scholar]
  57. 57.
    Costantini H et al. Phys. Lett. B 482:143–49 2000.)
    [Google Scholar]
  58. 58.
    Zavatarelli S et al. Nucl. Phys. A 688:1514–17 2001.)
    [Google Scholar]
  59. 59.
    Anders M et al. Phys. Rev. Lett. 113:4042501 2014.)
    [Google Scholar]
  60. 60.
    Trezzi D et al. Astropart. Phys. 89:57–65 2017.)
    [Google Scholar]
  61. 61.
    Arpesella C et al. Phys. Lett. B 389:3452–56 1996.)
    [Google Scholar]
  62. 62.
    Junker M et al. Phys. Rev. C 57:52700–10 1998.)
    [Google Scholar]
  63. 63.
    Bonetti R et al. Phys. Rev. Lett. 82:265205–8 1999.)
    [Google Scholar]
  64. 64.
    Costantini H et al. Nucl. Phys. A 814:1144–58 2008.)
    [Google Scholar]
  65. 65.
    Piatti D et al. Phys. Rev. C 102:5052802 2020.)
    [Google Scholar]
  66. 66.
    Bemmerer D et al. Nucl. Phys. A 779:297–317 2006.)
    [Google Scholar]
  67. 67.
    Lemut A et al. Phys. Lett. B 634:5483–87 2006.)
    [Google Scholar]
  68. 68.
    Formicola A et al. Phys. Lett. B 591:161–68 2004.)
    [Google Scholar]
  69. 69.
    Imbriani G et al. Astron. Astrophys. 420:625–29 2004.)
    [Google Scholar]
  70. 70.
    Imbriani G et al. Eur. Phys. J. A 25:3455–66 2005.)
    [Google Scholar]
  71. 71.
    Marta M et al. Phys. Rev. C 78:2022802 2008.)
    [Google Scholar]
  72. 72.
    Marta M et al. Phys. Rev. C 83:4045804 2011.)
    [Google Scholar]
  73. 73.
    Bemmerer D et al. J. Phys. G. 36:4045202 2009.)
    [Google Scholar]
  74. 74.
    LeBlanc PJ et al. Phys. Rev. C 82:5055804 2010.)
    [Google Scholar]
  75. 75.
    Caciolli A et al. Astron. Astrophys. 533:A66 2011.)
    [Google Scholar]
  76. 76.
    Straniero O et al. Astron. Astrophys. 598:A128 2017.)
    [Google Scholar]
  77. 77.
    Best A et al. Phys. Lett. B 797:134900 2019.)
    [Google Scholar]
  78. 78.
    Pantaleo FR et al. Phys. Rev. C 104:2025802 2021.)
    [Google Scholar]
  79. 79.
    Cavanna F et al. Phys. Rev. Lett. 115:25252501 2015.)
    [Google Scholar]
  80. 80.
    Depalo R et al. Phys. Rev. C 94:5055804 2016.)
    [Google Scholar]
  81. 81.
    Slemer A et al. Mon. Not. R. Astron. Soc. 465:44817–37 2016.)
    [Google Scholar]
  82. 82.
    Ferraro F et al. Phys. Rev. Lett. 121:17172701 2018.)
    [Google Scholar]
  83. 83.
    Ferraro F et al. Eur. Phys. J. A 54:344 2018.)
    [Google Scholar]
  84. 84.
    Boeltzig A et al. Phys. Lett. B 795:122–28 2019.)
    [Google Scholar]
  85. 85.
    Lind K et al. Astron. Astrophys. 554:A96 2013.)
    [Google Scholar]
  86. 86.
    Steffen M et al. Mem. Soc. Astron. Ital. Suppl. 22:152 2012.)
    [Google Scholar]
  87. 87.
    Iliadis C et al. Nucl. Phys. A 841:131–250 2010.)
    [Google Scholar]
  88. 88.
    Powers JR, Fortune HT, Middleton R, Hansen O. Phys. Rev. C 4:2030–46 1971.)
    [Google Scholar]
  89. 89.
    Hale SE et al. Phys. Rev. C 65:015801 2001.)
    [Google Scholar]
  90. 90.
    Karakas AI et al. Astrophys. J. 643:1471–83 2006.)
    [Google Scholar]
  91. 92.
    Sen A et al. Nucl. Instrum. Methods Phys. Res. B 450:390–95 2019.)
    [Google Scholar]
  92. 93.
    Beck C, Mukhamedzhanov AM, Tang X. Eur. Phys. J. A 56:387 2020.)
    [Google Scholar]
  93. 94.
    Tan WP et al. Phys. Rev. Lett. 124:19192702 2020.)
    [Google Scholar]
  94. 95.
    Heise J. J. Phys. Conf. Ser. 1342:012085 2020.)
    [Google Scholar]
  95. 96.
    Wiescher M. Phys. Perspect. 19:2151–79 2017.)
    [Google Scholar]
  96. 97.
    Aliotta M et al. J. Phys. G. 49:010501 2022.)
    [Google Scholar]
  97. 98.
    Strieder F et al. Nuclei in the Cosmos XV A Formicola, M Junker, L Gialanella, G Imbriani 259–63 New York: Springer 2019.)
    [Google Scholar]
  98. 99.
    Liu W et al. Sci. China Phys. Mech. Astron. 59:4642001 2016.)
    [Google Scholar]
  99. 100.
    Su J et al. Sci. Bull. 67:125–32 2022.)
    [Google Scholar]
  100. 101.
    Zhang L et al. Phys. Rev. Lett. 127:152702 2021.)
    [Google Scholar]
  101. 102.
    Szücs T et al. Eur. Phys. J. A 55:10174 2019.)
    [Google Scholar]
  102. 103.
    Grieger M et al. Phys. Rev. D 101:12123027 2020.)
    [Google Scholar]
  103. 104.
    Ludwig F et al. Astropart. Phys. 112:24–34 2019.)
    [Google Scholar]
  104. 105.
    Szücs T et al. Eur. Phys. J. A 48:18 2012.)
    [Google Scholar]
  105. 106.
    Bemmerer D et al. Solar Neutrinos K Zuber, M Meyer 249–63 Singapore: World Sci. 2019.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-110221-103625
Loading
/content/journals/10.1146/annurev-nucl-110221-103625
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error